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 الأنشطة العصبية العضلية باستخدام تحليل المشي والتعلم العميق استيفاء

 لأغراض إعادة التأهيل 
 
 

 *ابراهيم اسماعيل     

 **صالح مسعود
 ***حسام حنا     

 الملخص
  

. التأهيل إعادة وتطبيقات أبحاث في مهمة طريقة الحركية المتغيرات قياس ذلك في بما الحديثة الحركة تتبع تقنيات باستخدام المشية تحليل يعد
 التحفيز يتطلب. التأهيل إعادة علم تطبيقات أهم أحد الدماغية والأمراض بالشلل المصابين للمرضى( FES) الوظيفي الكهربائي التحفيز يعد

 والساق الفخذ زاوية تغيرات تتبع على نعمل البحث، هذا في. العضلات في تنفيذ الحركات ومشاركة الأطراف بحركة مسبقة معرفة للعضلات الفعال
. HuGaDB بيانات مجموعة باستخدام ومشتقاتها الفخذ زاوية وتقدير والسرعة الزاوية، التسارع حساسات على بناء   المشي مراحل أثناء

 التدريب طريق عن المستقيمة الفخذ عضلة نشاط لتحديد( FNN) ذات التغذية الأمامية العصبية الشبكة مع الثلاثة الميزات هذه تُستخدم
. المريض والمدربة عليها مسبقا   لنفس( EMG) والخرج هو الاشارة الكهربائية للعضلة كمدخلات المشي تحليل مع العصبية للشبكة المسبق
 و كتدريب٪ 96 يساوي دقة بمتوسط المريض لنفس مشي دورة للعضلة المستقيمة لكل EMGاشارة  إعادة على FNN قدرة النتائج توضح
 .EMG رقمنة لمراحل خاصة ،FES لأنظمة جيدة أداة المقترحة الطريقة تقدم. اختبار٪ 92.5

 

 
 (.EMG) الاشارة الكهربائية العضلية ذات التغذية الأمامية، العصبية الشبكة المشي، تحليل: المفتاحية الكلمات   
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Abstract 

 
Gait analysis using modern motion tracking techniques including measurement of kinematic variables is 

an important modality in rehabilitation research and applications. Functional electrical stimulation (FES) 

for patients with paralysis and cerebral diseases is one of the most important applications of rehabilitation 

science. Efficient muscle stimulation requires a pre-knowledge about limb motility and muscles synergy. 

In this paper, we are working to track the angle changes of the thigh and shin during walking phases 

based on accelerometer and gyroscope sensors, and estimating the thigh-shin angle and its derivative 

using HuGaDB dataset. Those three features are used with a feedforward neural network (FNN) to 

determine the activity of the rectus femoris muscle by pre-training of neural network with gait analysis as 

input and electromyography (EMG) signal as the output of the same patient. The results illustrate the 

ability of FNN to reproduce EMG for each gait cycle of the same patient with average precision equal to 

96% as training and 92.5% as testing. The proposed method presents a good tool for FES systems, 

especially for EMG encoding stages. 
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Introduction 

Brain injuries usually lead to paralysis or 

weakness of movement and those range from 

hemiplegia or incomplete paralysis of the 

lower extremities to complete paralysis. In 

the case of partial paralysis and motor 

weakness, electrical stimulation of the 

peripheral sensorimotor systems increases 

voluntary movement and muscle strength, 

and thus increases the activities of daily 

living (ADL) [1]. The rehabilitation modality 

of electrical stimulation (ES) which contains 

functional electrical stimulation (FES) and 

therapeutic electrical stimulation (TES), is 

much recommended in Adult Stroke 

Rehabilitation and Recovery and is 

considered as a supplementary modality with 

the standard care methods [2]. 

 

Gait analysis using modern motion tracking 

techniques including measurement of 

kinematic variables is an important modality 

in rehabilitation research and applications 

[3]. The estimated features and information 

from gait analysis and assessment are used 

widely in rehabilitation modalities because 

they offer a reference and control parameters 

and inputs for potential physiotherapy and 

exoskeleton-based muscle training methods 

[4]. In lower extremities case, we are able to 

track the joints angles, angular velocity and 

angular acceleration, and simultaneously, we 

are able to record electromyography (EMG) 

signals of participated muscles in gait motion 

which could offer a plenty information and 

features to conduct a comprehensive 

understanding about muscle synergy and 

mobility of lower limbs [5]. Recently, those 

integrate features have been used in 

rehabilitation modalities, especially in FES to 

train and stimulate muscle of patients with 

brain and spinal cord injuries [6]. Artificial 

intelligence and machine learning are 

involved in rehabilitation applications and 

research because of their powerful ability in 

classifying kinematic features and EMG 

signals during the gait cycle and phases and 

prediction of the relationship between those 

data [7]. Machine learning-based 

classification of surface electromyographic 

(sEMG) signals was used to detect gait-event 

prediction in control subjects during walking 

and in hemiplegic-child walking. Long Short 

Time Memory (LSTM) neural network was 

used as a prediction algorithm. Morbidoni et 

al (2021) proved the ability of neural 

networks in predicting the two main gait 

events (heel-strike (HS) and toe-off (TO)) 

using surface EMG signals in hemiplegic 

cerebral palsy [8]. In previous research of 

Morbidoni et al. (2019), multi-layer 

perceptron (MLP) neural networks were used 

to classify gait phases and predict foot–floor-

contact signal from sEMG signals during 

level ground walking among 23 healthy 

adults. This approach showed an average 

classification accuracy of 94.9% for learned 

subjects and 93.4% for unlearned ones [9]. 

Lower limb angles and EMG signals in five 

kinds of gait (walking on flat ground, uphill, 

downhill, up-step and down-step) and four 

kinds of movement (squat, lunge, raised leg 

and standing up) of healthy subjects were 

used with back-propagation (BP) neural 

network to re-estimate lower limbs 

movements using EMG signals. The results 
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show detection accuracy of 93.76% for five 

kinds of gait events [5]. An artificial neural 

network (ANN) was employed to classify 

gait data (walking over flat-ground, upstairs, 

downstairs, uphill, and downhill) and sEMG 

signals. The triceps surae muscle activation 

showed the highest classification accuracy of 

88.9% [10]. 

In this paper, we are working with the 

available online HuGaDB dataset that 

contains angular acceleration and velocity 

data of lower extremities with EMG of rectus 

femoris muscle during many types of ADL 

with 18 participants. The proposed method 

consists of using some important kinematic 

features of gait analysis as input for a 

feedforward neural network to estimate the 

appropriate EMG signal of the muscle that 

participated in achieving movements. By 

training the neural network on kinematic 

features during one gait cycle with the real 

EMG signal, we will be able to reproduce the 

same EMG signal of each gait cycle. The 

main objective of our work is to prepare a 

good tool for generating reference patterns of 

muscle activities which later could be used 

with FES modalities. 

Methods 

1. Gait and EMG Dataset 

 

In this paper, we are using HuGaDB dataset 

which is a human gait database for activity 

recognition based on wearable inertial 

sensors [11]. This dataset contains detailed 

gait data during daily activities such as 

walking, running, standing up etc. Gait data 

in this dataset consists of two types, the first 

type is angular velocity and acceleration data 

were measured by six inertial sensors were 

placed on the right and left thighs, shins and 

feet. The second type is EMG signals using 

two EMG sensors were placed on the right 

and left rectus femoris muscles and 

connected to the skin with three electrodes. 

Each EMG sensor has a voltage gain is about 

5000 and a band-pass filter with bandwidth 

(10-500 Hz). The MPU9250 inertial sensors 

consisted of a 3-axis accelerometer and a 3-

axis gyroscope integrated into a single chip. 

The sampling rate of all data equals 60 Hz. 

The places of HuGaDB dataset sensors are 

illustrated in (Figure 1), where blue “Ir1” 

refers to right foot inertial sensor, “Ir2” refers 

to right shin sensor, and “Ir3” refers to right 

thigh sensor. Red “EMGr1” sensor refers to 

EMG sensor of right rectus femoris muscle. 

In our work, we estimated the angle of the 

thigh (θ1) by calculating the angle changes 

from the angular velocity of the thigh during 

a specific recording time. The same method 

is used to calculate shin angle (θ2). The 

difference angle (θ12) between thigh and shin 

axes is calculated too. 
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Figure 1. Sensors and EMG electrodes positions in 

the lower extremities that are used in the HuGaDB 

dataset. 

2. Joints and EMG signals during gait cycle 

 

The human walk consists of a repeated gait 

cycle. Each gait cycle contains a stance phase 

and swing phase. The stance phase represents 

60% of the gait cycle and it could be 

categorized into the heel strike, support, and 

toe-off phases. The swing phase is the 

remaining 40% of the gait cycle and contains 

the leg lift and swing phases. Using the 

dataset, we found in each gait cycle of each 

patient that thigh angle (θ1), thigh-shin angle 

(θ12), and the derivative of thigh-shin angle 

(∆θ12) have a constant differential rate of 

change between angles and event-related 

features with EMG signal of rectus femoris 

muscle (EMGr1) as shown in (Figure 2). In 

our research work, we are using the 

enveloped signal of the original EMG signal 

using the Hilbert analytic envelope to smooth 

the curve outlining of the EMG signal. 

 

 

Figure 2. Changes of thigh and thigh-shin angles in 

one gait cycle with enveloped EMG signal of 

EMGr1 sensor. 

3. Neural network and EMG prediction 

 

After we prepared the necessary features of 

the gait cycle of a patient, we found that θ1, 

θ12, and ∆θ12 have a powerful influence on 

the EMG signal of rectus femoris muscle. 

Now, we are going to use a multilayer 

feedforward neural network (FNN) in 

classifying the EMG signal for each patient 

using the value of (θ1, θ12, and ∆θ12) 

features. The FNN is a type of artificial 

neural network that has no feedback or 

closed-loop between nodes or layers. It is 

often referred to as a multi-layered network 
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of neurons. An FNN consists of an input 

layer of neurons, a number of hidden layers, 

and an output layer. The FNN is 

implemented using Deep Learning Toolbox 

in MATLAB (The MathWorks, Inc. 2021) 

according to the following specifications: 

size of input layer equals 3 (θ1, θ12, and 

∆θ12), the size of output layer equals 1 

represents EMG signal, the size of the hidden 

layer is 100, and epochs number equals 100. 

The first step is training the neural network 

with the three features (θ1, θ12, and ∆θ12) 

regarding the EMG signal. And as a testing 

stage, we will use other gait cycles of the 

same patient to estimate the EMG signals and 

compare them with the reference EMG in the 

dataset as shown in (Figure 3). 

To measure the accuracy of FNN output, we 

are not able to use the classical metrics like 

accuracy and specificity. We used the similar 

procedure in literature [9, 12] by calculating 

the average of actual EMG signal for 100 

msec and consider it as true positive, and if 

average of estimated (predicted) EMG signal 

in the same time slot is not equal to actual 

value, it will be considered as false positive. 

The final precision is calculated using the 

formula: 

 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒔𝒍𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆
   (𝟏) 

 

Figure 3. Feedforward neural network with inputs 

and output. 

Results and discussion 

To test our proposed method, we used gait 

analysis data of 5 patients with 200 gait 

cycles of each one during walking in addition 

to EMG signals. For each patient, we trained 

FNN with 50 gait cycles, then we tested it 

with 150 cycles.  

As demonstrative results, we examined the 

trained FNN of 3 patients using their testing 

gait data, and the actual enveloped EMG 

signal is plotted with the estimated ones 

using FNN as shown in (Figure 4). 
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Figure 4. Comparison between actual EMG signal 

and estimated one of three patients in one gait 

cycle. 

By repeating the experiment for each patient 

and training FNN using 150 gait cycles and 

testing it using 90 gait cycles to reproduce 

EMG signals. We were able to get average 

precision equal to 96% as training and 92.5% 

as testing of five patients as shown in (Figure 

5). 

 

Figure 5. Average precision of five patients using 

150 gait cycles to predict EMG signals. 

 

The results demonstrate that by estimating powerful 

and reliable kinematic signals from gait analysis we 

can provide sufficient features for neural 

networks and deep learning approaches to re-

produce EMG signal which in the same 

context code converted to control signal for 

FES modalities. 

 

Conclusion 

In this paper, we worked with the available 

online HuGaDB dataset that contains angular 

acceleration and velocity data of lower 

extremities with EMG of rectus femoris 

muscle. The proposed method consists of 

using some important kinematic features of 

gait analysis as input for a feedforward 

neural network to estimate the appropriate 

EMG signal of the muscle that participated in 

achieving movements. We found that thigh 

angle (θ1), thigh-shin angle (θ12), and the 

derivative of thigh-shin angle (∆θ12) have a 

powerful influence on the EMG signal of 

rectus femoris muscle. By training the neural 

network on kinematic features during one 

gait cycle with the real EMG signal, we were 

be able to reproduce the same EMG signal of 

each gait cycle. The results demonstrate that 

proposed kinematic features from gait 

analysis can provide sufficient input for 

neural networks and deep learning 

approaches to re-produce EMG signal which 

in the same context code converted to control 

signal for FES modalities. 
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