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Estimation of Neuromuscular Activities Using Gait Analysis and
Deep Learning for Rehabilitation Purposes

Ebrahim Ismaiel”
Saleh Massoud™
Hussam Hanna™*

Abstract

Gait analysis using modern motion tracking techniques including measurement of kinematic variables is
an important modality in rehabilitation research and applications. Functional electrical stimulation (FES)
for patients with paralysis and cerebral diseases is one of the most important applications of rehabilitation
science. Efficient muscle stimulation requires a pre-knowledge about limb motility and muscles synergy.
In this paper, we are working to track the angle changes of the thigh and shin during walking phases
based on accelerometer and gyroscope sensors, and estimating the thigh-shin angle and its derivative
using HuGaDB dataset. Those three features are used with a feedforward neural network (FNN) to
determine the activity of the rectus femoris muscle by pre-training of neural network with gait analysis as
input and electromyography (EMG) signal as the output of the same patient. The results illustrate the
ability of FNN to reproduce EMG for each gait cycle of the same patient with average precision equal to
96% as training and 92.5% as testing. The proposed method presents a good tool for FES systems,
especially for EMG encoding stages.

Keywords: Gait Analysis, Feedforward neural network, Electromyography (EMG).
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Introduction

Brain injuries usually lead to paralysis or
weakness of movement and those range from
hemiplegia or incomplete paralysis of the
lower extremities to complete paralysis. In
the case of partial paralysis and motor
weakness, electrical stimulation of the
peripheral sensorimotor systems increases
voluntary movement and muscle strength,
and thus increases the activities of daily
living (ADL) [1]. The rehabilitation modality
of electrical stimulation (ES) which contains
functional electrical stimulation (FES) and
therapeutic electrical stimulation (TES), is
much recommended in Adult Stroke
Rehabilitation and Recovery and is
considered as a supplementary modality with
the standard care methods [2].

Gait analysis using modern motion tracking
techniques including measurement  of
kinematic variables is an important modality
in rehabilitation research and applications
[3]. The estimated features and information
from gait analysis and assessment are used
widely in rehabilitation modalities because
they offer a reference and control parameters
and inputs for potential physiotherapy and
exoskeleton-based muscle training methods
[4]. In lower extremities case, we are able to
track the joints angles, angular velocity and
angular acceleration, and simultaneously, we
are able to record electromyography (EMG)
signals of participated muscles in gait motion
which could offer a plenty information and
features to conduct a comprehensive
understanding about muscle synergy and
mobility of lower limbs [5]. Recently, those
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integrate  features have been wused in
rehabilitation modalities, especially in FES to
train and stimulate muscle of patients with
brain and spinal cord injuries [6]. Artificial
intelligence and machine learning are
involved in rehabilitation applications and
research because of their powerful ability in
classifying kinematic features and EMG
signals during the gait cycle and phases and
prediction of the relationship between those
data [7]. Machine learning-based
classification of surface electromyographic
(SEMG) signals was used to detect gait-event
prediction in control subjects during walking
and in hemiplegic-child walking. Long Short
Time Memory (LSTM) neural network was
used as a prediction algorithm. Morbidoni et
al (2021) proved the ability of neural
networks in predicting the two main gait
events (heel-strike (HS) and toe-off (TO))
using surface EMG signals in hemiplegic
cerebral palsy [8]. In previous research of
Morbidoni et al. (2019), multi-layer
perceptron (MLP) neural networks were used
to classify gait phases and predict foot—floor-
contact signal from sEMG signals during
level ground walking among 23 healthy
adults. This approach showed an average
classification accuracy of 94.9% for learned
subjects and 93.4% for unlearned ones [9].
Lower limb angles and EMG signals in five
kinds of gait (walking on flat ground, uphill,
downhill, up-step and down-step) and four
kinds of movement (squat, lunge, raised leg
and standing up) of healthy subjects were
used with back-propagation (BP) neural
network to re-estimate lower limbs
movements using EMG signals. The results
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show detection accuracy of 93.76% for five
kinds of gait events [5]. An artificial neural
network (ANN) was employed to classify
gait data (walking over flat-ground, upstairs,
downstairs, uphill, and downhill) and SEMG
signals. The triceps surae muscle activation
showed the highest classification accuracy of
88.9% [10].

In this paper, we are working with the
available online HuGaDB dataset that
contains angular acceleration and velocity
data of lower extremities with EMG of rectus
femoris muscle during many types of ADL
with 18 participants. The proposed method
consists of using some important kinematic
features of gait analysis as input for a
feedforward neural network to estimate the
appropriate EMG signal of the muscle that
participated in achieving movements. By
training the neural network on Kkinematic
features during one gait cycle with the real
EMG signal, we will be able to reproduce the
same EMG signal of each gait cycle. The
main objective of our work is to prepare a
good tool for generating reference patterns of
muscle activities which later could be used
with FES modalities.

Methods

1. Gait and EMG Dataset

In this paper, we are using HuGaDB dataset
which is a human gait database for activity
recognition based on wearable inertial
sensors [11]. This dataset contains detailed
gait data during daily activities such as
walking, running, standing up etc. Gait data
in this dataset consists of two types, the first
type is angular velocity and acceleration data

were measured by six inertial sensors were
placed on the right and left thighs, shins and
feet. The second type is EMG signals using
two EMG sensors were placed on the right
and left rectus femoris muscles and
connected to the skin with three electrodes.
Each EMG sensor has a voltage gain is about
5000 and a band-pass filter with bandwidth
(10-500 Hz). The MPU9250 inertial sensors
consisted of a 3-axis accelerometer and a 3-
axis gyroscope integrated into a single chip.
The sampling rate of all data equals 60 Hz.
The places of HuGaDB dataset sensors are
illustrated in (Figure 1), where blue “Irl1”
refers to right foot inertial sensor, “Ir2” refers
to right shin sensor, and “Ir3” refers to right
thigh sensor. Red “EMGr1” sensor refers to
EMG sensor of right rectus femoris muscle.
In our work, we estimated the angle of the
thigh (01) by calculating the angle changes
from the angular velocity of the thigh during
a specific recording time. The same method
is used to calculate shin angle (0,). The
difference angle (81,) between thigh and shin
axes is calculated too.
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Figure 1. Sensors and EMG electrodes positions in
the lower extremities that are used in the HuGaDB
dataset.

2. Joints and EMG signals during gait cycle

The human walk consists of a repeated gait
cycle. Each gait cycle contains a stance phase
and swing phase. The stance phase represents
60% of the gait cycle and it could be
categorized into the heel strike, support, and
toe-off phases. The swing phase is the
remaining 40% of the gait cycle and contains
the leg lift and swing phases. Using the
dataset, we found in each gait cycle of each
patient that thigh angle (8;), thigh-shin angle
(012), and the derivative of thigh-shin angle
(AB12) have a constant differential rate of
change between angles and event-related
features with EMG signal of rectus femoris
muscle (EMGr1) as shown in (Figure 2). In
our research work, we are using the
enveloped signal of the original EMG signal
using the Hilbert analytic envelope to smooth
the curve outlining of the EMG signal.
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Figure 2. Changes of thigh and thigh-shin angles in
one gait cycle with enveloped EMG signal of
EMGr1 sensor.

3. Neural network and EMG prediction

After we prepared the necessary features of
the gait cycle of a patient, we found that 01,
012, and AB12 have a powerful influence on
the EMG signal of rectus femoris muscle.
Now, we are going to use a multilayer
feedforward neural network (FNN) in
classifying the EMG signal for each patient
using the value of (61, 012, and A012)
features. The FNN is a type of artificial
neural network that has no feedback or
closed-loop between nodes or layers. It is
often referred to as a multi-layered network
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of neurons. An FNN consists of an input
layer of neurons, a number of hidden layers,
and an output layer. The FNN is
implemented using Deep Learning Toolbox
in MATLAB (The MathWorks, Inc. 2021)
according to the following specifications:
size of input layer equals 3 (061, 612, and
AB12), the size of output layer equals 1
represents EMG signal, the size of the hidden
layer is 100, and epochs number equals 100.
The first step is training the neural network
with the three features (01, 612, and A812)
regarding the EMG signal. And as a testing
stage, we will use other gait cycles of the
same patient to estimate the EMG signals and
compare them with the reference EMG in the
dataset as shown in (Figure 3).

To measure the accuracy of FNN output, we
are not able to use the classical metrics like
accuracy and specificity. We used the similar
procedure in literature [9, 12] by calculating
the average of actual EMG signal for 100
msec and consider it as true positive, and if
average of estimated (predicted) EMG signal
in the same time slot is not equal to actual
value, it will be considered as false positive.
The final precision is calculated using the
formula:

L. True positive
Precision = — — (1)
True positive + Fasle positive

Hidden layer

Input

Output

Figure 3. Feedforward neural network with inputs
and output.

Results and discussion

To test our proposed method, we used gait
analysis data of 5 patients with 200 gait
cycles of each one during walking in addition
to EMG signals. For each patient, we trained
FNN with 50 gait cycles, then we tested it
with 150 cycles.

As demonstrative results, we examined the
trained FNN of 3 patients using their testing
gait data, and the actual enveloped EMG
signal is plotted with the estimated ones
using FNN as shown in (Figure 4).
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Patient 1

Patient 2
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Figure 4. Comparison between actual EMG signal
and estimated one of three patients in one gait
cycle.

By repeating the experiment for each patient
and training FNN using 150 gait cycles and
testing it using 90 gait cycles to reproduce
EMG signals. We were able to get average
precision equal to 96% as training and 92.5%
as testing of five patients as shown in (Figure
5).

Figure 5. Average precision of five patients using
150 gait cycles to predict EMG signals.

The results demonstrate that by estimating powerful
and reliable kinematic signals from gait analysis we

can provide sufficient features for neural
networks and deep learning approaches to re-
produce EMG signal which in the same
context code converted to control signal for
FES modalities.

Conclusion

In this paper, we worked with the available
online HuGaDB dataset that contains angular
acceleration and velocity data of lower
extremities with EMG of rectus femoris
muscle. The proposed method consists of
using some important kinematic features of
gait analysis as input for a feedforward
neural network to estimate the appropriate
EMG signal of the muscle that participated in
achieving movements. We found that thigh
angle (0;), thigh-shin angle (012), and the
derivative of thigh-shin angle (A6:2) have a
powerful influence on the EMG signal of
rectus femoris muscle. By training the neural
network on kinematic features during one
gait cycle with the real EMG signal, we were
be able to reproduce the same EMG signal of
each gait cycle. The results demonstrate that
proposed kinematic features from gait
analysis can provide sufficient input for
neural networks and deep learning
approaches to re-produce EMG signal which
in the same context code converted to control
signal for FES modalities.
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