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Uncertainty Assessment and Computational Cost of Conditional
Sequential Simulation in 3D Modeling
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Abstract

Conditional Sequential Simulation Processes takes relatively long computational time in 3D modeling
problems depending on many relevant factors like: type of the conditional method used, model of the
Variogram function, size of the spatial framework (grid) and obviously number of the repeated simulations.
On the other hand, the uncertainty of the simulation depends on many factors; like simulation method,
Variogram model, the nature of data and its distribution, the spatial grid framework etc. The present paper
study both subjects: (1) the uncertainty analysis and assessment, and (2) computational cost analysis and
performance.

Through this study, two well known methods in geostatistics were used, namely Conditional Sequential
Gaussian Simulation (SGSim) and Conditional Sequential Indicator Simulation (SI1Sim). In addition, two
Variogram models were applied, the Spherical Variogram and the Gaussian Variogram. The theoretical
background for each method has been explained briefly and their algorithmic steps have been specified.
However variogram models were not discussed and one can find much information on this in the relevant
literature.

For the purpose of this research, many tests were applied using real geo-referenced data freely available
on the web. In more than 200 tests that were performed, some factors were fixed as they have no much effect
on the final accuracy and speed, and three factors only were changed , namely; the size and structure of the
3D grid, the Variogram function and number of simulations each time.

Those tests showed that the uncertainty of results is improved when increasing the size of the grid and
number of simulations, but this demands more computational time. Still, we need to answer the most relevant
questions: what is the appropriate size of grid?, how many simulations required?, which Variogram model
should we use?, in order to obtain the best accurate results with a minimum computational cost.

After many tests and the detailed statistical analysis of the results, the study extracted significant
information for optimizing the Conditional Sequential Simulation in 3D modeling and has given clear,
precise answers to the questions proposed in this research.

Keywords: Conditional Sequential Simulation, 3D Modeling by Simulation, Uncertainty
Assessment, Simulation Performance and Computational Cost.
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Introduction

The new techniques in global positioning
systems (GPS), as well as the recent
developments in geographic information systems
(GIS) and remote sensing, have permitted the
possibility of collecting a large amount of
scientific, geo-referenced data. This
developments created an increasing interest in
geostatistical spatial data analysis and modeling
[Chiles J., Delfiner P. (1999) Magller (2003),
Banerjee et al. (2004) and Schabenberger &
Gotway (2004)]. As it is well known, Statistics
forms the foundation of many scientific fields
and applications, Geostatistics on the other hand,
forms the basis of those scientific fields that are
interested in the analysis and interpretation of
geo-referenced data [Cressie (1993), Goovaerts,
P. (1997), Bolstad W.M. Curran J.M (2007)]. In
combination and cooperation with GIS
techniques and data, Geostatistics became a
respected scientific tool used in many
applications: e.g. in remote sensing, one can
detect spatial changes in land use and land cover,
perform radiometric enhancements in the images
or selecting the best image resolution for spatial
data [Atkinson and Quattrochi, et al (2000)]. In
GIS the generation, simulation or improvement
of DEM’s can be optimized using geostatistical
methods [Brus and Heuvelink, (2007)]. One can
find many other applications using those
methods in water resources assessments and
managements, in environmental  sciences,
forestry, agriculture, soil sciences, ecology,
geology, metrology etc. [Christakos, G. (2005) ,
Hengl T. (2007), Lantuejoul C. (2002) , Mund
Jan-Peter (2013)]. Geostatistical analysis is
concerned with studying phenomena that have
spatial or spatiotemporal extent and its
variability using a collection of deterministic and
stochastic tools in order to model the
phenomenon by simulation with the Monte
Carlo Method [Al-Abdalla M. (1998)]. The
essence of 3D modeling continuity by simulation
lies in the assumed relations between
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information and unknowns and between the
various elements and characteristics of the
available data [Al-Abdalla M. (1998)].

In geostatistics, conditional simulation is used to
estimate, by Monte Carlo Methods, complicated
nonlinear functions that depend explicitly on
multivariate stochastic distributions. When the
simulation domain is discrete, a sequential
procedure can be considered (Journel 1989).
This consists of prescribing an arbitrary ordering
of all of the points of the domain, and simulating
each point in turn according to a Conditional
Gaussian distribution given the generated values
of all the previous points. On the other hand, The
method of Sequential Indicator Simulation (SIS)
is type of conditional simulation that uses the
indicator random function models, being binary.
This method is ideally suited for simulating
categorical variables controlled by two-point
statistics.

Research Objectives

In earth sciences engineers face the problem of
modeling spatial structures from limited data,
especially in 3D. The data is few, sparse, and
typically contains varying degrees of noise. Most
often questions are raised such as:

(1) What is happening (or existing) in certain
unsampled locations?, (2) how much we are
confident with the results after a simulation
process takes place?, (3) assuming the
Variogram models are known, does the
uncertainty associated with those results meet
our requirements?, (4) Do we have enough
computational power to run as many simulations
as we need to?

The main objectives of this study is to present
the results of a comparative study designed to
evaluate uncertainty and performance of two
different geostatistical simulation methods,
namely the Conditional Sequential Gaussian
Simulation (SGS) and the Conditional
Sequential Indicator Simulation (SIS). The two
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methods will be presented in later sections of
this paper. With adequate computing power,
simulation by the Monte Carlo Method is
possibly the best way to study the uncertainty
associated with 3D modeling using probabilistic
multivariate transfer functions. The frequency
distribution (histogram) reflects the uncertainty
that can be obtained from a certain number of
simulations yielding different equiprobable
representations given the spatial structure (or
variability) of the data. This structure is known
as the Variogram Model.

Conditional Simulation Concept

The Conditional Simulation generates a Random
Fields (RF) that simulate the spatial variability
of the underlying random process Z(x). Usually
Kriging interpolation (or prediction) provides a
minimum-variance unbiased estimator, while
Kriging variance provides a measure of the local
estimation uncertainty. The main advantage of
stochastic estimation using Kriging techniques is
that the uncertainty (error variance) is estimated
together ~ with  the  prediction  value.
Unfortunately, unless a parametric distribution
of the spatial error is assumed, the Kriging
approach cannot provide confidence intervals
associated with the predicted values. With
conditional simulation,  the uncertainty
estimation or the confidence intervals are
guaranteed after performing a certain number of
simulations. Generation of more realizations
would lead to much precise estimation of the
uncertainty. Journel and Huijbregts (1978)
showed that the posterior estimation variance of
Conditional Simulation is as twice as that of
Kriging, thus one should emphasize that the
objective of conditional simulation is not to
obtain the best unbiased estimator that produced
by a Kriging predictions. Conditional Simulation
is useful to obtain information about the amount
of variability remaining in the physical process
Z(x) conditioning with respect to the
observations (Journel 1989), thus Kriging
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Predictions and Conditional Simulation address
two different problems.

The only three elements, the mean function u(+),
the covariance function C(-) and the data vector
z,; forms the basic elements of a conditional
simulation. The conditionally simulated nodes
Zs.(x) must pass through the data z;, having
unconditional mean u(-) and variance C(-).
Kriging predicator Z,,(x) would satisfy the
requirements, because it does interpolate the data
exactly and it is unbiased. However Kriging has
a smoothing tendency, thus it does not possess
enough variability in order to give a posterior
probability distribution about the uncertainty.
With Conditional Simulation we are able to
generate an infinite number of possible
realizations of a Random Field
{Z;(x),xe D,s =1—-> o} From among the
infinite simulations we choose those that meet
certain condition

Zs(xg) = Zy(xy), Vx, €D.

For example if we want the simulated model
honors data values at the actual data locations,
we set:

Zes(xq) = Zo(xg), Vxq €D,
Where x, represents data locations.

This is known as Conditional Simulation, which
has the same variability characteristics as the
real observed phenomenon. This means that the
simulated values Z.s(x,) have the same first
two experimentally found moments (the mean
and the variance) representing the histogram of
the real valuesZy(x,). Now consider the
decomposition of the process into a Kriging
predicator and an unconditional residual
(Journel and Huijbregts 1978).

ch(x) =Z"(x) + [Zus(x) - Z;;s(x)] (D

Where Z.,(x) is the conditional simulation,
Z*(x) is the Kriging estimators using the real
data set (representing the estimated grid), Z,,(x)
is the unconditional simulation, and Zg,(x) is
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simple-kriging estimators using the
unconditional ~ simulated data. The two
components of the right-hand side Z*(x) and
Z,s(x) —Z;,(x) are orthogonal.  This
orthogonality implies that Z..(x) has the same
unconditional covariance as (x) , that is C(-).
The quantity Z,;(x) — Z;;<(x) can be obtained
by Kriging the difference between data values
and the unconditionally simulated ones at data
locations. Thus the above expression can
rewritten as follows [Cressie (1993)]

ch(x) = Zus(x) + C(x)’ ' Z_l(zd — Zys) (2)

Where Z.4(x) and Z,(x) are the conditional
and unconditional simulations respectively,

C(x) = C(xd,xg),‘v’xd € D,Vx, € G :isthe

Covariance vector between data nodes D and the
simulated grid nodes G,

>Nz — zy5) is the Variance-Covariance
Matrix between the data values and the
simulated ones,

zy and zg are two vectors representing actual
data and the simulated ones at the data node
locations respectively.

Sequential Gaussian Simulation
(SGS)

Simple or Ordinary Kriging is used to obtain
estimates of the necessary conditional
distribution defined by the only two Gaussian
parameters; namely its mean and variance. The
simulations are then drawn randomly from this
distribution using inverse transform method.
Finally, the results of the Gaussian simulation
are transformed back into the original data
space. In general, the principle of Conditional
Sequential Simulation, is once the new value
simulated, it is added to the original set of
conditioning data, and the procedure repeated.
Finally all simulated nodes will have the same
initial spatial structure provided that all node
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values at data locations preserved. The principle
of Conditional Sequential Simulations can be
described as follows:

Consider f(zq,23,..,2n | 2z9) is the Cumulative
Probability Distribution Function (CPDF),
where z, denotes the conditioning data at n,
locations.

This probability function can be defined as

f(ZLZZf"'Zn | ZO) =
f(z1l zp) " f(22]21 U 2p) ...-

f(znlz1,22,.., 201 U Z5) (3)

Thus the generation of a realization by
Sequential Simulation takes the following steps:

Algorithm (1):

1. Draw a value z; from the conditional
probability distribution f; given the set z, as
conditioning data,

2. Draw a value z, from the conditional
probability distribution f, given z, U z; as
conditioning data,

3. Draw the next a value z from the
conditional probability distribution f; in the
same way and repeat the process.

4. Draw the last value z, from the conditional

probability distribution f,, given the set
(znlz1,22,..,24-1 U zy) as conditioning
data.

Remark 1: in case unconditional simulation is
needed one should reduce the set of conditioning
data to the null set; all simulations would be
replaced by drawing from the marginal
distribution f;.

Remark 2: There is no restriction on the spatial
locations of the random variables yielding an
algorithm that can be equally applied to generate
one or more variables on either a regular or
irregular grid.

However, it remains the problem of determining
the  Cumulative  Probability  Distribution
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Function (CPDF) of any single random variable
given any set of conditioning data. This problem
has been solved for the Gaussian distribution,
where the data first are transformed to the
standard Gaussian values.

If the continuous phenomenon {Z(x),x € D } is
generated by the sum of a number of
independent sources {y,(x),x € D,k =1,..,K}
with similar spatial distributions then the
phenomenon can be modeled by a Multi-
Gaussian Random Fields Model. Multi-Gaussian
models are extremely congenial (good-natured),
well understood, and they have large record of
successful applications. A random function is
said to be Gaussian or Multi-Gaussian if any
linear combination of its variables follows the
Gaussian distribution,

Z(x) = Z;l)lkYk(x) = Gaussian (4)

The Gaussian Function is unique for its
analytical simplicity and for being the extreme
distribution of many analytical theorems
globally known as ‘Central Limit Theorem’.

Sequential Gaussian Simulation Algorithm

The general procedure for generating a
simulation of a multivariate Gaussian field is
provided by the sequential principle described in
Algorithm (1). Each variable is simulated
sequentially  according to its  Gaussian
Cumulative Distribution Function CPDF. The
conditioning data consists of all original data and
all previously simulated values found within a
predefined neighborhood. The SGS algorithm
proceeds as follows (Deutsch and Journel 1992,
Deutcsh 2002):

Algorithm (2):

1. Determine the (CPDF) of the random
variable that represents the entire study area
(the distribution of z-data).
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2. Perform the normal score transform of z-
data into y-data with the standard normal
CPDF, i.e. the conditioning data should be
transformed into Standard Gaussian.

3. Given the model of the Semivariogram,
compute the covariance table of the
transformed conditioning data.

4. Define a random path through all grid nodes.

The path visits each node only once. At each
grid node retain a specific number of
neighboring data including both original y-
data and previously simulated ones.

5. At each grid node to be simulated

a. determine the conditioning data within the
search distance,

b. use kriging, with the normal score
variogram model, to determine the
Gaussian parameters (mean and variance)
of the (CPDF) of the random variable at
that node,

c. draw a simulated value from that cpdf.

d. add this node to the original data set,

e. Go back to step (5.a) and repeat the process
until all grid nodes have been visited.

6. Back transform the simulated normal values

into simulated wvalues for the original
variable.
z(x) =G (y(x)),x €D (5)
Remark 1:

the first condition for Sequential Gaussian
Simulation SGS is that the conditioning data are
multivariate Standard Gaussian with zero-mean
and unit variance. Most earth science data do not
present symmetric Gaussian histogram. In this
case a non-linear transformation should be
applied in order to obtain a standard Normal y-
data.
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Sequential  Indicator  Simulation

(SIS)

Given a set of spatially distributed data and grid
node system, SIS is a procedure for estimating a
new value at any non-sampled location (grid
node) by Indicator kriging. The SIS procedure is
achieved through sequential estimation of the
Cumulative Probability Distribution Function
(CPDF) at each grid node. The (CPDF) provides
the probability that at a particular location the
variable of interest does not exceed a certain
threshold. This probability is conditioned to the
initial data values and to all previously simulated
ones. After the (CPDF) has been estimated, the
simulation of the corresponding value is
achieved by Monte Carlo, where a random
number is drawn from the uniform distribution
U(0,1) then the simulated value is computed
from the inverse of the (CPDF) by using the
inverse transform method.

The theory behind the SIS technique is as
follows:

Suppose {Z(x),x € D} is the random process
defines the conditioning data. Define the
indicator random variable at location x for the
threshold z, by using the binary transformation
(Journel 1989),

1if Z(x <zp)
0 otherwise

1(x,20) = { (6)
where the conditional expected value of the
indicator random variable I(x, z,) is defined as
E{I(x,z0)|Z(x)} = Pr{Z(x) < z,} (7
Consider  threshold z, is defined by z, =
G™1(1—p) , where p is the mean of the
indicator value, and G(z) is the cumulative
Gaussian distribution function. SIS is achieved
by simulating values of a standard Gaussian
variable and applying the threshold z, to the
result. Therefore one can estimate the value of
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the conditional probability defined above by
estimating  the  corresponding  indicator
conditional expectation using Indicator Kriging
from the indicator inverse transform of the
conditioning data. The SIS algorithm estimates
(CPDF) for all classes at the class limits z,, by
using Simple or Ordinary Kriging.

Sequential Indicator Simulation Algorithm

Before performing the Sequential Indicator
Simulation, the range of each category is
established along with its variability model (or
the indicator covariance function Cy(h; z,), that
is needed for each thresholds z,. Given an initial
data set z and K indicator covariance functions,
the SIS algorithm proceeds as follows
(Hernandez & Srivastava 1990, Deutsch C.V.
2006):

Algorithm (3)

1. Transform the initial conditioning data into
indicator data sets, so that the range of
values taken by the attribute z is classified
into K categories each associated with a
certain threshold z,. Code each conditioning
value into a vector of K indicator values.

2. Transform the K indicator covariance
models into the same number of Kriging
covariance  matrices.  Establishing the

Kriging systems in advance would speed up
data search.

3. Define a random path through all grid nodes,
so that each node is visited only once.
4. Now for each grid node to be simulated
along the random path:
a) Determine the conditioning data within the
search distance.
b) Retain the closest data points up to a
specified maximum number per octant.
¢) Again for each threshold z,,k =1,..,K.

Set up the Kriging system using the
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indicator covariance model and solve the
system.

Compute the (CPDF) estimate for the
threshold as a linear combination of the
indicator conditioning data,

Z(x) =Yz Iy (x), Pr{Z(x) < z,)
(8)

Draw a random number from the uniform
distribution (0,1) , and simulate a value z
by reading from cpdf, applying the inverse
transform (Monte Carlo Method).

d)

f) Transform the simulated values into a
series of K indicator values according to
the same K thresholds.

g) Add the simulated node obtained in the
previous steps to the set of conditioning
values.

h) Go back to step (4). Repeat until all grid

nodes have been visited.

Remark 1: The implementation of the SIS is
more demanding than other simulation methods.
In addition more information is needed to
establish the spatial variability structure that has
to be reproduced by the simulation.

Remark 2: The simulated nodes with SIS
algorithm is not continuous but pre-classified
into a number of categories, or in other words
the range of variability is split into number of
classes, each simulated separately by SIS.

Remark 3: One can use as many classes as
needed in order to obtain the required resolution,
if only information about the variogram model is
available. The classes need not to be of equal
amplitude, thus one can focus on that part of the
range of variability most significant to the
simulation. We can also use one model for all
categories, which speeds the execution time of
the algorithm considerably, because in this case
only one Kriging system has to be solved.

The advantages of Sequential Indicator
Simulation (SIS) algorithm are:
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1. Conditioning is done as integral part of the
simulation.

2. No assumption about the probability
distribution (CPDF) is required.

3. It is not restricted to spatial forms of the
covariance or variogram functions.

4. Qualitative or guantitative information can

be included in the simulation.

Examples of Conditional Sequential
Simulation using synthetic data

Some examples are presented here in order to
show how the output would appear when
applying the conditional SGS or SIS simulation
methods on synthetic 3D data. Figure(1) presents
figure(2) presents SIS
and

SGS method, and
method, using  Spherical
Variograms respectively.

Gaussian

Figure(1) Conditional SGS Simulation, with Spherical
Variogram (left) and Gaussian Variogram (right)
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Figure(2) Conditional SIS Simulation, with Spherical
Variogram (left) and Gaussian Variogram (right)

Implementation of the Conditional
Sequential Simulations With 3D data

Both conditional SGS and SIS simulations have been
implemented using real 3D data related to the
Historical Lake Water, Groundwater Levels, and
Spring Flows in Central Florida. Maps and data used
in the study belong to the Lake Area in Central
Florida, where data collected mainly by the U.S.
Geological Survey over the last 80 years [see
Scientific Investigations Report 2014-5032, O’Reilly
A.M., and others (2014) for details]. The Study area
is located within:

[—82°07', —80°90']East , [27°65', 29°00'] North.

The data consists of measured data collected by the
east-central Florida transient (ECFT) model [see
Scientific  Investigations  Report  2012-5161,
Sepulveda N, et al. 2012], and by the Central Florida
Artificial Neural Network Decision Support System
(CFANN DSS). All data is available for download
from the USGS site (http://dx.doi.org/
10.3133/sir20145032).

Figure (3) presents the base map of the Lakes Area by
USGS digital data using UTM projection-Zone 17.
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Groundwater observation locations and boundary
districts are shown on the map. Water-level were
available for 438 wells in the study area at different
depths from 15m to 485m (1450feet). Figure(4)
shows a 3D scatter plot of the data points.
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Figure (3) the base map of the Lakes Area
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Figure (4) 3D scatter plot of the data points

Only two Variogram models were used; the Spherical
Figures (5) and the Gaussian Figure (6). Distances
here are represented by Geographic Units (for
example 0.15deg=~16.5 km). Variogram Ranges that
were fixed in all subsequent tests are: max=0.25,
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medium=0.20, min=0.15. the data Values were

stand

ardized to fit the Gaussian Distribution (1, 0.5),

and the sill (maximum Semivariogram value):

Samevanogram +(h)

n

Samivanogram

NO)
1
max(y, (h)) = max(m Z (Z(x) — Z(x]»))z) ~ 1.0
k=1

Fitting Spherical SemiVanogram (Model) to Data

0 0.05 D10 015 020 025 0.30
#8Q Distance (b)

Figure (5) Fitting Spherical Variogram Model

Fitting Gaussian SemiVariogram {Model) to Data

0 005 010 0.15 0.20 0.25 0.3
Lag Distance (h)

Figure (6) Fitting Gaussian Variogram Model

Implementation of the Conditional Sequential
Gaussian Simulation (SGS):

Simulations have been completed using the
following Parameters:

Variogram Model Types: the Spherical (Left
set of figures below), then Variogram Model
Type : Gaussian (Right set of figures below)
Variogram Ranges : max: 0.25, medium:
0.20, min: 0.15

Simulation Seed Value = 1804910
Maximum Conditioning Data= 25
Number of all Simulations = 36

Number of Data Points = 438

Final Grid Arrangement:

36

X Y Z
Grid Cells: 60 60 50
Cell Size : 0.013 0.013 0.028
Start Coord:  -81.80 29.00 0.05 (-485m)
Finish Coord: -81.20 28.20 1.45 (-15m)
Coord. Units:  deg. deg. x1000feet

The output of this implementation is shown in the
Figure (7). Notice the differences between the left set
where Spherical Model was used and the set on the
right where the Gaussian Model was used. The
second representation exhibits smoother patches.

Figure (7) Figures of Sequential Gaussian
Simulation (SGS) with Spherical Variogram (left)
and Gaussian Variogram (right)

Implementation of the Conditional Sequential
Indicator Simulation (SIS):

This type of simulation has been completed using the
following Parameters:
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o Variogram Model Types: the Spherical (Left
set of figures below ), then Variogram
Model Type : Gaussian (Right set of figures
below)

e Variogram Ranges :
0.20, min: 0.15

e Simulation Seed Value = 52470184

e Number of Indicators = 3

max: 0.25, medium:

e Marginal Probabilities values: 0.65, 0.25,
0.10
e  Maximum Conditioning Data= 25
e Number of all Simulations = 36
e Number of Data Points = 438
¢  Final Grid Arrangement:
X Y Z
Grid Cells: 60 60 50
Cell Size 0.013 0.013 0.028
Start Coord: -81.80 29.00 0.05 (-485m)

Finish Coord: -81.20 28.20 1.45 (-15m)
Coord. Units: deg. deg.  x1000feet

The output of this implementation is shown in the
Figure (8). Here the patches for both variograms are
the same.

Figure (8) Figures of Sequential Indicator
Simulation (S1S) with Spherical Variogram (left)
and Gaussian Variogram (right)
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Uncertainty Assessment with SIS

The figures below show the results of simulation tests
performed using Conditional Sequential Indicator
Simulation (SIS) method with the two models (the
Gaussian and the Spherical), changing grid structure
(from 10000 total voxels till 100000 total voxels),
and for each structure changing number of
simulations (NS= 10, 20, 36, 48, 64 and 100
simulation). All test used the marginal probabilities
values: 0.65, 0.25, 0.10, assuming that 25% belong to
the groundwater data 10% to lakes data and 65%
stands for unavailable data. After all simulations for
each round are ready, the output of the Mean value,
Standard Deviation and Variance could be computed
and presented as shown in the figures (11,12,13).
Then uncertainty for each of the three statistical
measures was computed and registered. Those tests
show that Mean Uncertainty decreases in the same
way by increasing number of voxels or by increasing
total simulations. After ~64 simulations, one can
obtain better results only by increasing number of
voxels as we

ian Modal)

Uncartaety of Meon Vitue

Number of Simutsions

Figure(9) Mean Uncertainty vs. number of simulations
and seven Grid Structure (or Voxels) — SIS Method —
Gaussian model
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Unstttandy of Vistsoon Vatie

Nusebary of Samukd or

Figure(10) Variance Uncertalnty vs. number of
simulations and seven Grid Structure (or Voxels) SIS
Method — Gaussian model

see in the figure(9). On the other hand Standard
deviation uncertainty or Variance Uncertainty
(Variance=o?; o Standard deviation) do not show
stability after 64 simulations and their values
continue decreasing beyond that, as we see in the
figure (10).
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Figure(11) only two SIS tests presented for NS=20
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Figure(13) two SIS tests presented for NS=48 and 100

Uncertainty Assessment with SGS

Similar tests to SIS were performed using
Conditional Sequential Gaussian Simulation (SGS)
method with the two models (the Gaussian and the
Spherical), changing grid structure in same way (from
10000 total voxels till 100000 total voxels. The
figures below show the results of simulation tests,
where for each structure changing number of
simulations (NS=12, 24, 36, 48, 64 and 100
simulation).  Variogram  Ranges:  max=0.25,
medium=0.20, min=0.15 were fixes for all. Again,
after all simulations for each round are ready, the
output of the Mean value, Standard Deviation and
Variance could be computed and presented as shown
in the figures (16,17,18) . Then uncertainty for each
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of the three statistical measures was computed and
registered. Those tests show that Mean Uncertainty
decreases in the same way by increasing number of
voxels or by increasing total simulations. For SGS
method, the mean value of uncertainty decreases
slowly by increasing number of

simulations NS, or by increasing number of voxels as
we see in the figure (14). Standard deviation
uncertainty or Variance Uncertainty (Variance=o?;
o Standard deviation) measures do not show any
stability after 100 simulations and their values
continue decreasing beyond that, [figure (15)].

MEAN Un y v Number of Simuk " (m:mrc_nuu-»

Urcerinty of Mean Value

Nomters of Simuletoos

Figure (14) Mean Uncertainty vs. number of simulations
and seven Grid Structure (Voxels) SGS Method —
Spherical model

Vm.- umm s Nn‘mh-v of »Scnnlm-}l 15GS -.SM:.-.I Mod )

Urcorainny of Varenos Yalue

Number of Sewnons

Figure (15) Variance Uncertainty vs. number of
simulations and seven Grid Structure (Voxels) SGS
Method — Spherical model
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Computational Cost Assessment

Simulation tests have been performed for both SIS
Method and SGS Method and using the Spherical and
Gaussian Variogram models changing grid structure
(17 in total starting from 10,000 voxels till 2000,000
total voxels). Again for each structure changing
number of simulations (NS) (for SIS six in total, NS=
6, 20, 36, 48, 64 and 100 , and for SGS six also,
NS=12, 24, 36, 48, 64 and 100). This means that for
each SIS or SGS Method about 100 test have been
executed and for each test the time of execution was
measured precisely (with accuracy £1.0 millisecond).
All tests were performed in the way with the same
parameters explained in the previous sections. The
time that has been measured belongs only to the CPU
time for simulations and writing results to disk. There
is an extra time is needed for presenting outputs or
other arrangements was not included because this is
not depend on number of voxels, the NS number or
the method used. The characteristics of the CPU
processor that has been used is Intel i7 2.20 GB runs
by Windows 10 (64bit) operating system. Table (1)
and table (2) show the results of the execution time
(in seconds) for both SIS and SGS methods
respectively. Those results are demonstrated
graphically in figure (19) for SIS and in figure (20)
for SGS simulations.

Table (1) SIS Method execution time in seconds

| Numbar : 0 36 a3 P 00 |
.'.vl Mowh .nmn.ll!n‘."\) Sm' satons Smuh’»ons Smml.huv‘s Simulatiors ! St Atons
| 10000| o 95‘ 3 IM 4. 2-5 6778 g 10 euo
| 20000] 1.696] 6.127, 7986  13.464] 21. t\.'
|___30000] 2 us 0.074. 11,826 19.790 32.050¢
| 40000 |,f)a 12 n»_ 'sub‘ 2an| Vua:o‘
| 3co00| 10 15.747. 18 at-s 8,791 53912
| o000 4 366/ 18022 :3.527. 41,118 63.571)
| 2coog s ee:; :s.w:i 31281 54.734, 85.304)
| 100000; 7.533 31726 39.262 £9.284) _t08.353]
|_125000] 9 z-r. 39. u_ S0. 37* 25,596 136.375}
_150000] 10.726) a7 528 60. 839 105.1 191] 160.693)
|__180000| 13.242| 57857 7 na 135.786] 192,063
|__216000| 18,183 69192 sa.u:‘-. 151,936, 227,631
|_ 232000 15.308] 80663 1029%| 178318 269,031
| 343000 24951 11153 140,985 242,516, 369.040|
|_ 322000 3635400  167.781 210 A*s 38.336 535,503
|_728000) 54290] 241600 323, als 555.850 711978  788.527
| 1000000 71225 385,063 495.254|  205.784| 1008388  1115.393)
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Table (2) SGS Method execution time in seconds

| Number 12 28 % 28 6 10
ia' Voxek | Simulations | Simulations | Simulations | Snm\.latcn:. Smefations Smulations §
| 10000 2014 2 537. 5. 475‘ 7. HC‘ 8.624. 10. 51‘
| 20000] 3.055| 5573 10397] 14587 17704 22417
=cooa 228 a7 15641 21708 26579 33. :m
| 40000, s s27]  11as8|  21320]  2a7as 36.097 45.374)
: Ecooq. 10, "98 13.685| % f,'c: 36.047] 45 i;s-' 57. w'/
| 60000| 3415 16520 32274 43083 sss47  69.324)
#0000/ :7 un 2414 u 196/ 56995 % 9-0 92 y.x‘
1100000, 21626] 27355 54146 71438 93181 115,511
| 125000/ n ;xx)' M.aan) 62238 90.002; 117.541 144 tM
|__130000] 32818 41.002| v2320] 107088 141000 175 sn;
| 130000| 39.092| 0,300, 93738 128778 0 216.3804
| 216000 45.043; ©1.433; 115, ua' 153 065/ 260.834
|_ 252000 56.096 71415] 120153 178215 310.892)
| ‘43003 7. 44~ 95976 130977 286474 424,607
| s12000[ 115075|  1ss1a1] 293699  3es 8a8.297]
719000  166.618]  209.343| 425001 334,
| X.A.COOD 230, 3‘0 22715 591122 1278 3‘4

The x and y axis of the charts are Log- Log which
show more details for smaller grid structures (voxels
number). As we see from the figures that the
relationship is linear in both cases (SIS and SGS).
Those figures are also useful for making predictions
by interpolation or extrapolation (unless the PC has
same or similar parameters).

Loglog Mot Tirme va Toted Vosal for 5385 30 Senulation

Figure (19) the linear relationship between simulation
time (seconds) and Total Number of Voxels (SIS Method)
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Figure (20) the linear relationship between simulation
time (seconds) and Total Number of Voxels ( SGS
Method)

The last results do not show clearly which method is
faster SIS or SGS because there are many disturbing
values when comparing the two tables above. Also
we still do not know whether the relationship is also
linear or in other words, whether the total number of
voxels processed in one second using SIS Method or
using SGS Method will be the same, if all other
parameters are the same !. One more question; do the
Spherical Variogram model behave in the same way
as with the Gaussian in term of computational cost?

For this purpose, another synthetic measure was
created which calculates the speed of simulation by
the following formula

NS-TV

Speed = T

Where Speed refers to the total simulated voxel that
is generated in one second,

NS refers to number of simulations, TV refers to
Total Voxels and T refers to the time in seconds.

The values in the following tables show (“Speed”
Computations) the total number of voxels processed
in a second using SIS Method fixed in table (3) and
using SGS Method in table (4). The tables values
have been illustrated in the figures (21) and (22)
respectively.
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Table (3) Total Number of Voxels processed in a
second using SIS Method (Sph: Spherical
model, Gau: Gaussian)

SIS i & /Sph N/Gau»!&l&ph]lslﬁau ﬂ/GauElOO/Sph
moooi 620906 I 83211 : 84780 o817 TS068 91408
20000 70755 | 65285 | 90158 | 71301 | 74531 | 93345
30000 75472 | 66123 | 93324 | 72764 | 75143 | 93604
a0000] 75734 | 64128 | 90765 | 70858 | 72241 | 90830
50000/ 0863 | 63504 | 92450 | 71025 | 72056 | 92744
ooooo; 82455 6308% | 91821 70047 70088 93535
80000 34477 | &3578 | 92069 | 70081 | 70348 | e37s2
100000] 73650 | 63040 | 91662 | 66280 | 69906 | 62264
__125000| 50715 | 63217 | 89326 | es287 | 70207 | s1ess
150000] 53908 | 63123 | 88750 | 68447 | 70277 | 93230
180000 515%% 62222 30364 680688 70210 93715
216000 50084 | 51398 | 87943 | 68419 | 69177 | sage0
252000 80391 | 62328 | 88120 | 67834 | 68500 | 03670
343000, 22482 61471 87583 67888 66510 92543
512000| 24072 | 61032 | 87573 | 66720 | 67837 | 05611
729000, 75687 | 60348 | 8i0as 62833 65530 { 92451
1000000 21939 57793 72690 | 59569 63469 | &9614
vamw; 79232 | 62675 | 88123 | 68569 | 69994 | 92930

Table (4) Total Number of Voxels processed in a second
using SGS Method (Sph: Spherical model,
Gau: Gaussian)

T
SGS  12/Gau|24/Sph |36/ Gau| 48 /Sph | 64/ Gau |100 /Sph
10000 39583 | B1716 | 68783 | 75660 | 74212 | 98102

20000 | 50185 | 86130 | 9251 | 77453 | 72300 | 89218
30000 | 578035 | 85541 | ecooes | 7s3a1 | 72237 | ssess

#0000 | 56292 | B6037 | 67514 | 78599 | 70920 | 86255
S0000 | 55566 | 87687 | 66890 | 78580 | 68252 | 86958
60000 54399 | 87120 | €5927 | 78879 | 68536 | 86550
80000 | 55169 | 85661 | 66673 | 79374 | 68303 | 86672

_ 100000 | 55489 E6160 65487 | 79143 | &8684 | 86572
125000 | 55351 | 87105 | 65046 | 78665 | 68061 | 86617

_ 150000 | 54343 | B6410 | 65433 79228 | 68085 | 85520

180000 | 54419 | 85545 64972 | 79094 | 66486 | 83187
216000 | 53352 | B438% | 64867 | 79736 | 67367 | 82811

_252000 | 53908 | 84688 | 64729 79645 | 67313 | 81057
343000 53143 84887 63657 78798 66108 80781
512000 | 53391 | B40S3 | 62758 | 79150 | 66226 | 78976
729000 52503 B3377 61743 7825% 67300 | 78051
1000000 | 52101 | 81991 | 60901 | 77588 | 66782 | 78244

Average 55153 85207 65562 78605 68663 | BA768

The answers to all above suggested questions can be
deduced from the figures (21) and (22).

e In general, SIS Method is much faster than SGS
Method 10-15%, as we see with the Spherical
variogram and NS=100, SIS speed is about
93000
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1wt Speed va Total Voxeis for 3D Srmastation Lsing SIS

GRID Tmal Vossts Mumbor

Figure (21) the relationship between simulation
“Speed” (Total Voxel/second) and number of voxels
for one simulation Using SIS Method.

Speed va Totsl Voxels for 30 Semulsmas Using 5G%

........

GMID Totet Vicosds Numbees

Figure (22) the relationship between simulation
“Speed” (Total Voxels/second) and number of voxels
for one Simulation using SGS Method.

voxels/sec. while it is near 85000 voxels/sec. for
SGS. When using Gaussian variogram and
NS=36, SIS speed is about 88000 voxels/sec.
while SGS speed is about 66000 voxels/sec.

For both methods (SIS or SGS) the speed is not
stable all the time, as we see some distributions
in the beginning for grid total voxels number are
less than 350,000. After that limit SGS speed
becomes stable. On the other hand SIS speed has
also some stability, but its performance becomes
a little slower for larger grid total voxels.

e One can also notice, in general, from tables (3)
and (4) or from corresponding figure that when
using the Spherical Variogram the speed is
nearly 20%-25% faster than its level using the
Gaussian variogram, no matter whether the
simulation is performed by SIS or SGS method.

Conclusions

Statistical tests have proved that the Mean
Uncertainty decreases (with both SIS or SGS
Conditional Simulations) by either increasing number
of total voxels (3D grid) or by increasing number of
simulations (NS) or both. For SIS method this
uncertainty becomes stable after the limit NS=64,
while for SGS method the same feature becomes
stable after NS=100 limit.

The tests also proved that by either increasing number
of total voxels (3D grid) or by increasing number of
simulations (NS) Variance Uncertainty continue
decreasing beyond the limit NS=100, but for SIS
method this feature is a little slower and for SGS
method the decreasing is much faster.

For both SGS and SIS Conditional Simulation
methods, there is a clear linear relationship between
Computational Cost (simulation time) and number of
Voxels of the 3D grid no matter which CPU
processor is used. This conclusion helps to predict
precisely the computational cost for large 3d grid
structure and/or very large number of simulations
(say NS>100). Note that each of SIS or SGS has its
own chart and its own speed, thus we should not
unify the two charts.

The multiple tests (more than 200) proved that SIS
method speed is 10-15% faster than SGS Method.
The tests also proved that speed of simulations is
faster 20%-25% using Spherical Variogram than
when using the Gaussian one.

e Special Matlab programs have been used in all
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implementation, and presentations of this
research, with support from mGstat and SGeMS
libraries for performing simulations only. This
software is free online [see mGstat: Hansen
T.M (2011)] and [SGeMS; Rémy N., Wu J.,
Boucher A. (2004)].
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