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Abstract 

Conditional Sequential Simulation Processes takes relatively long computational time in 3D modeling 

problems depending on many relevant factors like: type of the conditional method used, model of the 

Variogram function, size of the spatial framework (grid) and obviously number of the repeated simulations. 

On the other hand, the uncertainty of the simulation depends on many factors; like simulation method, 

Variogram model, the nature of data and its distribution, the spatial grid framework etc. The present paper 

study both subjects: (1) the uncertainty analysis and assessment, and (2) computational cost analysis and 

performance. 

Through this study, two well known methods in geostatistics were used, namely Conditional Sequential 

Gaussian Simulation (SGSim) and Conditional Sequential Indicator Simulation (SISim). In addition, two 

Variogram models were applied, the Spherical Variogram and the Gaussian Variogram. The theoretical 

background for each method has been explained briefly and their algorithmic steps have been specified. 

However variogram models were not discussed and one can find much information on this in the relevant 

literature. 

For the purpose of this research, many tests were applied using real geo-referenced data freely available 

on the web. In more than 200 tests that were performed, some factors were fixed as they have no much effect 

on the final accuracy and speed, and three factors only were changed , namely; the size and structure of the 

3D grid, the Variogram function and number of simulations each time. 

Those tests showed that the uncertainty of results is improved when increasing the size of the grid and 

number of simulations, but this demands more computational time. Still, we need to answer the most relevant 

questions: what is the appropriate size of grid?, how many simulations required?, which Variogram model 

should we use?, in order to obtain the best accurate results with a minimum computational cost.  

After many tests and the detailed statistical analysis of the results, the study extracted significant 

information for optimizing the Conditional Sequential Simulation in 3D modeling and has given clear, 

precise answers to the questions proposed in this research. 
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 تقييم الدقة والكلفة الحسابية للمحاكاة الشرطية المتتالية
 في النمذجة ثلاثية الأبعاد 

 

 (1)د. محمد صالح العبدالله
 

 ملخص
ويتغيمر ذمذا الوقمت  ،تستغرق عمليات المحاكاة الشرطية المتتالية في النمذجة ثلاثية الأبعاد للمسائل الكبيرة الحجمم وقتماح حسمابياح طمويلاح نسمبياح 

وبممالطبت عممدد  ،حجممم ااطممار المكممانيو نممموذت تممابت التغيريممة يالفمماريو رام ، و ة مثممل نمموط الطريقممة الشممرطية المسممتخدمة، تبعمماح لعوامممل يساسممية عممد  
نمموذت و تكرارات المحاكاة. من جهة يخرى دقة نتائج المحاكماة بمدورذا تتغيمر تبعماح لعمدد كبيمر ممن العواممل منهما الطريقمة المسمتخدمة فمي المحاكماة، 

  1وذمما ي ،الموضموعين طبيعة البيانات وتوزعها، ااطار المكاني المصفوفي ..الم.. تركمز ذمذل المقالمة علمس دراسمة ذمذينو التغيرية يالفاريو رام ، 
   تحليل زمن الحساب والأداء.2وكذلك علس ي هاوتقييمتحليل الأخطاء 

وذمما المحاكماة الشمرطية المتتابعمة بموجمب توزيمت  ماوص  ،الأكثمر اسمتخداماح فمي الجيوستاتسمتيك اِسمتخخدمت الطريقتمانفي إطار ذذل الدراسمة 
(SGSim)،  والمحاكاة الشرطية المتتابعة التصنيفية(SISim) وذمما التمابت الكمرو  ،ن فقمط لتمابت التغيريمة يالفماريو رام اخدم نموذجمسمتخ اِ ، كمذلك، 

الطممريقتين مممت وضممت الخوارزميممات لكممل منهممما، لكنممق لممم يممتم التطممرق إلممس شممرح نممماذت التغيريممة  تمماكلرح الأسمماا النيممر  لوالتممابت الغاوصممي. شخمم
 المستخدمة فهي مشروحة في ي لب المراجت ذات الصلة. 

فرة علمس الشمبكة العنكبوتيممة امتمو وذمذل البيانمات  ،بمرجعيمة جغرافيممةبيانمات مكانيمة  ة باسمتخدامد  اختبممارات عم يخجريمتبقصمد إنجماز ذمذل الدراسمة 
فمي  ،الدقمة يو سمرعة الحسماب فميختبار تم تثبيت بعم  العواممل التمي لميا لهما تمبثير كبيمر ا 200التي عددذا تجاوز كلها ختبارت الامجاناح. في 

 .  في كل مرة للإطار المكاني، تابت التغيرية وعدد سيناريوذات المحاكاة 3dمصفوفة الحجم  خي ر حين 
ولكمن ذمذا كلمق يكمون علمس  ،يثبتت التجارب ين دقة النتائج تتحسن عند زيادة حجمم ااطمار المصمفوفي وكمذلك عنمد زيمادة عمدد ممرات المحاكماة

نمموذت الفماريو رام   كمم عمدد ممرات المحاكماة  ومماو  : مما حجمم ااطمار المصمفوفي الآتيمةالأسئلة  عنحساب زمن الحساب. وذنا نحتات إلس إجابة 
 كي نحصل في النهاية علس يفضل دقة وبصورة نختصر فيها من زمن الحساب إلس الحد الأدنس  

همممة ومفيممدة للحممل الأمثممل للمحاكمماة الشممرطية مليممل التفصمميلي ااحصممائي للنتممائج استخلصممت ذممذل الدراسممة معلومممات ة والتحبعممد التجممارب العممد  
   الأسئلة المطروحة في البحث. عنويعطت إجابات واضحة ودقيقة  ،المتتالية في النمذجة ثلاثية الأبعاد
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Introduction 

The new techniques in global positioning 

systems (GPS), as well as the recent 

developments in geographic information systems 

(GIS) and remote sensing, have permitted the 

possibility of collecting a large amount of 

scientific, geo-referenced data. This 

developments created an increasing interest in 

geostatistical spatial data analysis and modeling 

[Chiles J., Delfiner P. (1999) Møller (2003), 

Banerjee et al. (2004) and Schabenberger & 

Gotway (2004)]. As it is well known, Statistics 

forms the foundation of many scientific fields 

and applications, Geostatistics on the other hand, 

forms the basis of those scientific fields that are 

interested in the analysis and interpretation of 

geo-referenced data [Cressie (1993), Goovaerts, 

P. (1997), Bolstad W.M. Curran J.M (2007)]. In 

combination and cooperation with GIS 

techniques and data, Geostatistics became a 

respected scientific tool used in many 

applications:  e.g. in remote sensing, one can 

detect spatial changes in land use and land cover, 

perform radiometric enhancements in the images 

or selecting the best image resolution for spatial 

data [Atkinson and Quattrochi, et al (2000)]. In 

GIS the generation, simulation or improvement 

of DEM’s can be optimized  using geostatistical 

methods [Brus and Heuvelink, (2007)]. One can 

find many other applications  using those 

methods in water resources assessments and 

managements, in environmental sciences, 

forestry, agriculture, soil sciences, ecology, 

geology, metrology etc. [Christakos, G. (2005) , 

Hengl T. (2007), Lantuejoul C. (2002) , Mund 

Jan-Peter (2013)]. Geostatistical analysis is 

concerned with studying phenomena that have 

spatial or spatiotemporal extent and its 

variability using a collection of deterministic and 

stochastic tools in order to model the 

phenomenon by simulation with the Monte 

Carlo Method [Al-Abdalla M. (1998)]. The 

essence of 3D modeling continuity by simulation 

lies in the assumed relations between 

information and unknowns and between the 

various elements and characteristics of the 

available data [Al-Abdalla M. (1998)]. 

In geostatistics, conditional simulation is used to 

estimate, by Monte Carlo Methods, complicated 

nonlinear functions that depend explicitly on 

multivariate stochastic distributions. When the 

simulation domain is discrete, a sequential 

procedure can be considered (Journel 1989). 

This consists of prescribing an arbitrary ordering 

of all of the points of the domain, and simulating 

each point in turn according to a Conditional 

Gaussian distribution given the generated values 

of all the previous points. On the other hand, The 

method of Sequential Indicator Simulation (SIS) 

is type of conditional simulation that uses the 

indicator random function models, being binary. 

This method is ideally suited for simulating 

categorical variables controlled by two-point 

statistics. 

Research Objectives  

In earth sciences engineers face the problem of 

modeling spatial structures from limited data, 

especially in 3D. The data is few, sparse, and 

typically contains varying degrees of noise. Most 

often questions are raised such as:  

(1) What is happening (or existing) in certain 

unsampled locations?, (2) how much we are 

confident with the results after a simulation 

process takes place?, (3) assuming the 

Variogram models are known, does the 

uncertainty associated with those results  meet 

our requirements?, (4) Do we have enough 

computational power to run as many simulations 

as we need to?  

The main objectives of this study is to present 

the results of a comparative study designed to 

evaluate uncertainty and  performance of two 

different geostatistical simulation methods, 

namely the Conditional Sequential Gaussian 

Simulation (SGS) and the Conditional 

Sequential Indicator Simulation (SIS). The two 
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methods will be presented in later sections of 

this paper. With adequate computing power, 

simulation by the Monte Carlo Method is 

possibly the best way to study the uncertainty 

associated with 3D modeling using probabilistic 

multivariate transfer functions. The frequency 

distribution (histogram) reflects the uncertainty 

that can be obtained from a certain number of 

simulations yielding different equiprobable 

representations given the spatial structure (or 

variability) of the data. This structure is known 

as the Variogram Model.  

Conditional Simulation Concept 

The Conditional Simulation generates a Random 

Fields (RF) that simulate the spatial variability 

of the underlying random process 𝑍(𝑥). Usually 

Kriging interpolation (or prediction) provides a 

minimum-variance unbiased estimator, while 

Kriging variance provides a measure of the local 

estimation uncertainty. The main advantage of 

stochastic estimation using Kriging techniques is 

that the uncertainty (error variance) is estimated 

together with the prediction value. 

Unfortunately, unless a parametric distribution 

of the spatial error is assumed, the Kriging 

approach cannot provide confidence intervals 

associated with the predicted values. With 

conditional simulation, the uncertainty 

estimation or the confidence intervals are 

guaranteed after performing a certain number of 

simulations. Generation of more realizations 

would lead to much precise estimation of the 

uncertainty. Journel and Huijbregts (1978) 

showed that the posterior estimation variance of 

Conditional Simulation is as twice as that of 

Kriging, thus one should emphasize that the 

objective of conditional simulation is not to 

obtain the best unbiased estimator that produced 

by a Kriging predictions. Conditional Simulation 

is useful to obtain information about the amount 

of variability remaining in the physical process 

𝑍(𝑥) conditioning with respect to the 

observations (Journel 1989), thus Kriging 

Predictions and Conditional Simulation address 

two different problems.  

The only three elements, the mean function 𝜇(∙), 

the covariance function C(∙) and the data vector 

𝑧𝑑 forms the basic elements of a conditional 

simulation. The conditionally simulated nodes 

𝑍𝑠𝑐(𝑥) must pass through the data 𝑧𝑑, having 

unconditional mean  𝜇(∙) and variance C(∙). 

Kriging predicator 𝑍𝑎𝑘(𝑥) would satisfy the 

requirements, because it does interpolate the data 

exactly and it is unbiased. However Kriging has 

a smoothing tendency, thus it does not possess 

enough variability in order to give a posterior 

probability distribution about the uncertainty. 

With Conditional Simulation we are able to 

generate an infinite number of possible 

realizations of a Random Field 

{ 𝑍𝑠(𝑥), 𝑥 𝜖 𝐷, 𝑠 = 1 → ∞ }. From among the 

infinite simulations we choose those that meet 

certain condition  

 𝑍𝑠(𝑥𝑎) =  𝑍0(𝑥𝑎), ∀𝑥𝑎 ∈ 𝐷. 

For example if we want the simulated model 

honors data values at the actual data locations, 

we set: 

 𝑍𝑐𝑠(𝑥𝑎) =  𝑍0(𝑥𝑎), ∀𝑥𝑎 ∈ 𝐷, 

Where 𝑥𝑎 represents data locations. 

This is known as Conditional Simulation, which 

has the same variability characteristics as the 

real observed phenomenon. This means that the 

simulated values  𝑍𝑐𝑠(𝑥𝑎) have the same first 

two experimentally found moments (the mean 

and the variance) representing the histogram of 

the real values 𝑍0(𝑥𝑎). Now consider the 

decomposition of the process into a Kriging 

predicator and an unconditional residual 

(Journel and Huijbregts 1978). 

𝑍𝑐𝑠(𝑥) = 𝑍∗(𝑥) + [𝑍𝑢𝑠(𝑥) − 𝑍𝑢𝑠
∗ (𝑥)]    (1) 

Where 𝑍𝑐𝑠(𝑥) is the conditional simulation, 

𝑍∗(𝑥) is the Kriging estimators using the real 

data set (representing the estimated grid), 𝑍𝑢𝑠(𝑥) 

is the unconditional simulation, and 𝑍𝑠𝑘(𝑥)  is 
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simple-kriging estimators using the 

unconditional simulated data. The two 

components of the right-hand side 𝑍∗(𝑥) and 

𝑍𝑢𝑠(𝑥) − 𝑍𝑢𝑠
∗ (𝑥) are orthogonal. This 

orthogonality implies that 𝑍𝑐𝑠(𝑥) has the same 

unconditional covariance as (𝑥) , that is 𝐶(∙). 

The quantity 𝑍𝑢𝑠(𝑥) − 𝑍𝑢𝑠
∗ (𝑥) can be obtained 

by Kriging the difference between data values 

and the unconditionally simulated ones at data 

locations. Thus the above expression can 

rewritten as follows [Cressie (1993)] 

𝑍𝑐𝑠(𝑥) = 𝑍𝑢𝑠(𝑥) + 𝐶(𝑥)′ ∙ ∑ (𝑧𝑑 − 𝑧𝑢𝑠)−1    (2) 

Where 𝑍𝑐𝑠(𝑥) and 𝑍𝑢𝑠(𝑥) are the conditional 

and unconditional simulations respectively, 

 𝐶(𝑥)′ ≡ 𝐶(𝑥𝑑 , 𝑥𝑔), ∀𝑥𝑑 ∈ 𝐷, ∀𝑥𝑔 ∈ 𝐺  : is the  

Covariance vector between data nodes D and the 

simulated grid nodes G, 

∑ (𝑧𝑑 − 𝑧𝑢𝑠)−1  
 
is the Variance-Covariance 

Matrix between the data values and the 

simulated ones,  

𝑧𝑑  𝑎𝑛𝑑 𝑧𝑔 are two vectors representing actual 

data and the simulated ones at the data node 

locations respectively. 

Sequential Gaussian Simulation 

(SGS) 

Simple or Ordinary Kriging is used to obtain 

estimates of the necessary conditional 

distribution defined by the only two Gaussian 

parameters; namely its mean and variance. The 

simulations are then drawn randomly from this 

distribution using inverse transform method. 

Finally, the results of the Gaussian simulation 

are transformed back into the original data 

space. In general, the principle of Conditional 

Sequential Simulation, is once the new value 

simulated, it is added to the original set of 

conditioning data, and the procedure repeated. 

Finally all simulated nodes will have the same 

initial spatial structure provided that all node 

values at data locations preserved. The principle 

of Conditional Sequential Simulations can be 

described as follows: 

Consider 𝑓(𝑧1, 𝑧2, . . , 𝑧𝑛 | 𝑧0) is the Cumulative 

Probability Distribution Function (CPDF), 

where  𝑧0 denotes the conditioning data at 𝑛0 

locations.   

This probability function can be defined as 

𝑓(𝑧1, 𝑧2, . . , 𝑧𝑛 | 𝑧0) =

𝑓(𝑧1| 𝑧0) ∙ 𝑓(𝑧2|𝑧1 ∪ 𝑧0) … ∙
𝑓(𝑧𝑛|𝑧1, 𝑧2, . . , 𝑧𝑛−1 ∪ 𝑧0)   (3)  

Thus the generation of a realization by 

Sequential Simulation takes the following steps:  

Algorithm (1):  

1. Draw a value 𝑧1 from the conditional 

probability distribution 𝑓1 given the set 𝑧0 as 

conditioning data, 

2. Draw a value 𝑧2 from the conditional 

probability distribution 𝑓2 given 𝑧0 ∪ 𝑧1 as 

conditioning data, 

3. Draw the next a value 𝑧𝑖 from the 

conditional probability distribution 𝑓𝑖 in the 

same way and repeat the process.  

4. Draw the last value 𝑧𝑛 from the conditional 

probability distribution 𝑓𝑛 given the set   

(𝑧𝑛|𝑧1, 𝑧2, . . , 𝑧𝑛−1 ∪ 𝑧0) as conditioning 

data. 

 

Remark 1: in case unconditional simulation is 

needed one should reduce the set of conditioning 

data to the null set; all simulations would be 

replaced by drawing from the marginal 

distribution 𝑓1. 

Remark 2: There is no restriction on the spatial 

locations of the random variables yielding an 

algorithm that can be equally applied to generate 

one or more variables on either a regular or 

irregular grid.  

However, it remains the problem of determining 

the Cumulative Probability Distribution 
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Function (CPDF) of any single random variable 

given any set of conditioning data. This problem 

has been solved for the Gaussian distribution, 

where the data first are transformed to the 

standard Gaussian values.  

If the continuous phenomenon {𝑍(𝑥), 𝑥 ∈ 𝐷  } is 

generated by the sum of a number of 

independent sources {𝑦𝑘(𝑥), 𝑥 ∈ 𝐷, 𝑘 = 1, . . , 𝐾} 

with similar spatial distributions then the 

phenomenon can be modeled by a Multi-

Gaussian Random Fields Model. Multi-Gaussian 

models are extremely congenial (good-natured), 

well understood, and they have large record of 

successful applications. A random function is 

said to be Gaussian or Multi-Gaussian if any 

linear combination of its variables follows the 

Gaussian distribution, 

𝑍(𝑥) = ∑ 𝜆𝑘𝑌𝑘(𝑥) ≡ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛     (4)
𝐾

𝑘=1
 

The Gaussian Function is unique for its 

analytical simplicity and for being the extreme 

distribution of many analytical theorems 

globally known as ‘Central Limit Theorem’. 

Sequential Gaussian Simulation Algorithm  

The general procedure for generating a 

simulation of a multivariate Gaussian field is 

provided by the sequential principle described in 

Algorithm (1). Each variable is simulated 

sequentially according to its Gaussian 

Cumulative Distribution Function CPDF. The 

conditioning data consists of all original data and 

all previously simulated values found within a 

predefined neighborhood. The SGS algorithm 

proceeds as follows (Deutsch and Journel 1992, 

Deutcsh 2002): 

Algorithm (2):  

1. Determine the (CPDF) of the random 

variable that represents the entire study area 

(the distribution of z-data).  
 

2. Perform the normal score transform of z-

data into y-data with the standard normal 

CPDF, i.e. the conditioning data should be 

transformed into Standard Gaussian.  
 

3. Given the model of the Semivariogram, 

compute the covariance table of the 

transformed conditioning data. 
 

4. Define a random path through all grid nodes. 

The path visits each node only once. At each 

grid node retain a specific number of 

neighboring data including both original y-

data and previously simulated ones.  
 

5. At each grid node to be simulated  
 

a. determine the conditioning data within the 

search distance, 

b. use kriging, with the normal score 

variogram model, to determine the 

Gaussian parameters (mean and variance) 

of the (CPDF) of the random variable at 

that node, 

c. draw a simulated value from that cpdf. 

d. add this node to the original data set, 

e. Go back to step (5.a) and repeat the process 

until all grid nodes have been visited. 
 

6. Back transform the simulated normal values 

into simulated values for the original 

variable. 

𝑧(𝑥) = 𝐺−1(𝑦(𝑥)), 𝑥 ∈ 𝐷             (5) 

Remark 1:  

the first condition for Sequential Gaussian 

Simulation SGS is that the conditioning data are 

multivariate Standard Gaussian with zero-mean 

and unit variance. Most earth science data do not 

present symmetric Gaussian histogram. In this 

case a non-linear transformation should be 

applied in order to obtain a standard Normal y-

data.  
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Sequential Indicator Simulation 

(SIS) 

Given a set of spatially distributed data and grid 

node system, SIS is a procedure for estimating a 

new value at any non-sampled location (grid 

node) by Indicator kriging. The SIS procedure is 

achieved through sequential estimation of the 

Cumulative Probability Distribution Function 

(CPDF) at each grid node. The (CPDF) provides 

the probability that at a particular location the 

variable of interest does not exceed a certain 

threshold. This probability is conditioned to the 

initial data values and to all previously simulated 

ones. After the (CPDF) has been estimated, the 

simulation of the corresponding value is 

achieved by Monte Carlo, where a random 

number is drawn from the uniform distribution 

𝑈(0,1) then the simulated value is computed 

from the inverse of the (CPDF) by using the 

inverse transform method.   

The theory behind the SIS technique is as 

follows:  

Suppose {𝑍(𝑥), 𝑥 ∈ 𝐷} is the random process 

defines the conditioning data. Define the 

indicator random variable at location x for the 

threshold 𝑧0 by using the binary transformation 

(Journel 1989),   

𝐼(𝑥, 𝑧0) = {
1  𝑖𝑓   𝑍(𝑥 ≤ 𝑧0)
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (6)  

where the conditional expected value of the 

indicator random variable 𝐼(𝑥, 𝑧0) is defined as  

𝐸{𝐼(𝑥, 𝑧0)|𝑍(𝑥)} = Pr {𝑍(𝑥) ≤ 𝑧0} (7)  

Consider  threshold 𝑧0 is defined by 𝑧0 =

 𝐺−1(1 − 𝑝) , where p is the mean of the 

indicator value, and G(z) is the cumulative 

Gaussian distribution function. SIS is achieved 

by simulating values of a standard Gaussian 

variable and applying the threshold 𝑧0 to the 

result. Therefore one can estimate the value of 

the conditional probability defined above by 

estimating the corresponding indicator 

conditional expectation using Indicator Kriging 

from the indicator inverse transform of the 

conditioning data. The SIS algorithm estimates 

(CPDF) for all classes at the class limits 𝑧0, by 

using Simple or Ordinary Kriging.  

Sequential Indicator Simulation Algorithm  

Before performing the Sequential Indicator 

Simulation, the range of each category is 

established along with its variability model (or 

the indicator covariance function 𝐶1(ℎ; 𝑧0), that 

is needed for each thresholds 𝑧0. Given an initial 

data set z and K indicator covariance functions, 

the SIS algorithm proceeds as follows 

(Hernandez & Srivastava 1990, Deutsch C.V.  

2006):  

Algorithm (3) 

1. Transform the initial conditioning data into 

indicator data sets, so that the range of 

values taken by the attribute z is classified 

into K categories each associated with a 

certain threshold 𝑧𝑘. Code each conditioning 

value into a vector of K indicator values.  
 

2. Transform the K indicator covariance 

models into the same number of Kriging 

covariance matrices. Establishing the 

Kriging systems in advance would speed up 

data search.  
 

3. Define a random path through all grid nodes, 

so that each node is visited only once.  
 

4. Now for each grid node to be simulated 

along the random path:  

a) Determine the conditioning data within the 

search distance. 

b) Retain the closest data points up to a 

specified maximum number per octant. 

c) Again for each threshold 𝑧𝑘 , 𝑘 = 1, . . , 𝐾.  

Set up the Kriging system using the 
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indicator covariance model and solve the 

system.  

d) Compute the (CPDF) estimate for the 

threshold as a linear combination of the 

indicator conditioning data,   
 

   𝑍(𝑥) = ∑ 𝑧𝑘 ∙ 𝐼𝑘(𝑥),   𝑃𝑟{𝑍(𝑥) ≤ 𝑧𝑘)    

(8) 
 

e) Draw a random number from the uniform 

distribution (0,1) , and simulate a value z 

by reading from cpdf, applying the inverse 

transform (Monte Carlo Method).  

f) Transform the simulated values into a 

series of K indicator values according to 

the same K thresholds.  

g) Add the simulated node obtained in the 

previous steps to the set of conditioning 

values. 

h) Go back to step (4). Repeat until all grid 

nodes have been visited.  

Remark 1: The implementation of the SIS is 

more demanding than other simulation methods. 

In addition more information is needed to 

establish the spatial variability structure that has 

to be reproduced by the simulation.  

Remark 2: The simulated nodes with SIS 

algorithm is not continuous but pre-classified 

into a number of categories, or in other words 

the range of variability is split into number of 

classes, each simulated separately by SIS.  

Remark 3: One can use as many classes as 

needed in order to obtain the required resolution, 

if only information about the variogram model is 

available. The classes need not to be of equal 

amplitude, thus one can focus on that part of the 

range of variability most significant to the 

simulation. We can also use one model for all 

categories, which speeds the execution time of 

the algorithm considerably, because in this case 

only one Kriging system has to be solved.  

The advantages of Sequential Indicator 

Simulation (SIS) algorithm are:  

1. Conditioning is done as integral part of the 

simulation.  

2. No assumption about the probability 

distribution (CPDF) is required.  

3. It is not restricted to spatial forms of the 

covariance or variogram functions.  

4. Qualitative or quantitative information can 

be included in the simulation. 

Examples of Conditional Sequential 

Simulation using synthetic data 

Some examples are presented here in order to 

show how the output would appear when 

applying the conditional SGS or SIS simulation 

methods on synthetic 3D data. Figure(1) presents 

SGS method,  and  figure(2) presents SIS 

method, using Spherical and Gaussian 

Variograms respectively. 

 
Figure(1) Conditional SGS Simulation,  with Spherical 

Variogram (left) and Gaussian Variogram (right) 



Damascus University Journal For The Engineering Sciences         Vol. 34 – No.1 - 2018 

35 

 
Figure(2) Conditional SIS Simulation, with Spherical 

Variogram (left) and Gaussian Variogram (right) 

 

Implementation of the Conditional 

Sequential Simulations With 3D data 

Both conditional SGS and SIS simulations have been 

implemented using real 3D data related to the 

Historical Lake Water, Groundwater Levels, and 

Spring Flows in Central Florida. Maps and data used 

in the study belong to the Lake Area in Central 

Florida, where data collected mainly by the U.S. 

Geological Survey over the last 80  years [see 

Scientific Investigations Report 2014–5032,  O’Reilly 

A.M.,   and others (2014)  for details]. The Study area 

is located within:  

[−82°07′, −80°90′]𝐸𝑎𝑠𝑡 , [27°65′, 29°00′] 𝑁𝑜𝑟𝑡ℎ. 

The data consists of measured data collected by the 

east-central Florida transient (ECFT) model [see 

Scientific Investigations Report 2012–5161, 

Sepúlveda N, et al. 2012], and by the Central Florida 

Artificial Neural Network Decision Support System 

(CFANN DSS). All data is available for download 

from the USGS site (http://dx.doi.org/ 

10.3133/sir20145032).  

Figure (3) presents the base map of the Lakes Area by 

USGS digital data using UTM projection-Zone 17. 

Groundwater observation locations and boundary 

districts are shown on the map. Water-level were 

available for 438 wells in the study area at different 

depths from 15m to 485m (1450feet). Figure(4) 

shows a 3D scatter plot of the data points. 

Figure (3) the base map of the Lakes Area 

 

 
Figure (4) 3D scatter plot of the data points 

Only two Variogram models were used; the Spherical 

Figures (5) and the Gaussian Figure (6). Distances 

here are represented by Geographic Units (for 

example 0.15deg≈16.5 km). Variogram Ranges that 

were fixed in all subsequent tests are: max=0.25, 

http://dx.doi.org/
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medium=0.20, min=0.15. the data Values were 

standardized to  fit the Gaussian Distribution (1, 0.5), 

and the sill (maximum Semivariogram value):  

max (𝛾𝑥(ℎ)) = max (
1

2𝑁(ℎ)
∑ (𝑍(𝑥𝑖) − 𝑍(𝑥𝑗))

2
) ≈ 1.0

𝑁(ℎ)

𝑘=1

 

 

 
Figure (5)  Fitting Spherical Variogram Model 

 

 
Figure (6) Fitting Gaussian Variogram Model 

Implementation of the Conditional Sequential 

Gaussian Simulation (SGS):  

 Simulations have been completed using the 

following Parameters: 

 Variogram Model Types: the Spherical (Left 

set of figures below), then Variogram Model 

Type : Gaussian (Right set of figures below) 

 Variogram Ranges : max: 0.25,  medium: 

0.20,  min: 0.15 

 Simulation Seed Value = 1804910 

 Maximum Conditioning Data =     25 

 Number of all Simulations = 36  

 Number of Data Points = 438  

 Final Grid Arrangement: 

                         X          Y          Z 

 Grid Cells:         60          60           50  

Cell Size    :       0.013   0.013     0.028  

Start Coord:     -81.80   29.00    0.05 (-485m)  

Finish Coord:   -81.20   28.20    1.45 (-15m)  

Coord. Units:     deg.      deg.      ×1000feet 

 

The output of this implementation is shown in the 

Figure (7). Notice the differences between the left set 

where Spherical Model was used and the set on the 

right where the Gaussian Model was used. The 

second representation exhibits smoother patches.  
 

 

 

Figure (7)   Figures of  Sequential Gaussian 

Simulation (SGS) with Spherical Variogram (left) 

and Gaussian Variogram (right) 
 

Implementation of the Conditional Sequential 

Indicator Simulation (SIS):  

This type of simulation has been completed using the 

following Parameters: 
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 Variogram Model Types: the Spherical (Left 

set of figures below ), then Variogram 

Model Type : Gaussian (Right set of figures 

below) 

 Variogram Ranges : max: 0.25,  medium: 

0.20,  min: 0.15 

 Simulation Seed Value = 52470184 

 Number of Indicators =  3 

 Marginal Probabilities values: 0.65, 0.25, 

0.10 

 Maximum Conditioning Data =     25 

 Number of all Simulations = 36  

 Number of Data Points = 438  

 Final Grid Arrangement: 

                         X          Y          Z 

 Grid Cells:         60          60           50  

Cell Size    :       0.013     0.013     0.028  

Start Coord:     -81.80   29.00    0.05 (-485m)  

Finish Coord:   -81.20   28.20    1.45 (-15m)  

Coord. Units:     deg.      deg.      ×1000feet 

 

The output of this implementation is shown in the 

Figure (8). Here the patches for both variograms are 

the same. 

 
Figure (8)  Figures of  Sequential Indicator 

Simulation (SIS) with Spherical Variogram (left) 
and Gaussian Variogram (right) 

 

Uncertainty Assessment with SIS 
 

 

The figures below show the results of simulation tests 

performed using Conditional Sequential Indicator 

Simulation (SIS) method with the two models (the 

Gaussian and the Spherical), changing grid structure 

(from 10000 total voxels till 100000 total voxels), 

and for each structure changing number of 

simulations (NS= 10, 20, 36, 48, 64 and 100 

simulation). All test used the marginal probabilities 

values: 0.65, 0.25, 0.10, assuming that 25% belong to 

the groundwater data 10% to lakes data and 65% 

stands for unavailable data. After all simulations for 

each round are ready, the  output of the Mean value, 

Standard Deviation and Variance could be computed 

and presented as shown in the figures (11,12,13). 

Then uncertainty for each of the three statistical 

measures was computed and registered. Those tests 

show that Mean Uncertainty decreases in the same 

way by increasing number of voxels or by increasing 

total simulations. After ~64 simulations, one can 

obtain better results only by increasing number of 

voxels as we 

 

  
Figure(9) Mean Uncertainty vs. number of simulations 

and seven Grid Structure (or Voxels) – SIS Method – 

Gaussian model 
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Figure(10) Variance Uncertainty vs. number of 

simulations and seven Grid Structure (or Voxels) SIS 

Method – Gaussian model 

 

 

see in the figure(9). On the other hand Standard 

deviation uncertainty or Variance Uncertainty 

(Variance=𝜎2; 𝜎 Standard deviation) do not show 

stability after 64 simulations and their values 

continue decreasing beyond that, as we see in the 

figure (10). 

 

 

 
Figure(11) only two SIS tests presented for NS=20 

 
 

 

 
Figure(12) only two SIS tests presented for NS=48 

 

 

Figure(13) two SIS tests presented for NS=48 and 100 

 

Uncertainty Assessment with SGS 
 

Similar tests to SIS were performed using 

Conditional Sequential Gaussian Simulation (SGS) 

method with the two models (the Gaussian and the 

Spherical), changing grid structure in same way (from 

10000 total voxels till 100000 total voxels. The 

figures below show the results of simulation tests, 

where for each structure changing number of 

simulations (NS=12, 24, 36, 48, 64 and 100 

simulation). Variogram Ranges: max=0.25, 

medium=0.20, min=0.15 were fixes for all.  Again, 

after all simulations for each round are ready, the  

output of the Mean value, Standard Deviation and 

Variance could be computed and presented as shown 

in the figures (16,17,18) . Then uncertainty for each 
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of the three statistical measures was computed and 

registered. Those tests show that Mean Uncertainty 

decreases in the same way by increasing number of 

voxels or by increasing total simulations. For SGS 

method, the mean value of uncertainty decreases 

slowly by increasing number of 

simulations NS, or by increasing number of voxels as 

we see in the figure (14). Standard deviation 

uncertainty or Variance Uncertainty (Variance=𝜎2; 

𝜎 Standard deviation)  measures do not show any 

stability after 100 simulations and their values 

continue decreasing beyond that, [figure (15)]. 

 

Figure (14) Mean Uncertainty vs. number of simulations 

and seven Grid Structure (Voxels) SGS Method – 

Spherical model 

 

 
Figure (15) Variance Uncertainty vs. number of 

simulations and seven Grid Structure (Voxels)  SGS 

Method  – Spherical model 

 

 
Figure(16) only two SGS tests presented for NS=24 

 
Figure (17) only two SGS tests presented for NS=48 

 
Figure (18) only two SGS tests presented for NS=100 
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Computational Cost Assessment  

Simulation tests have been performed for both SIS 

Method and SGS Method and using the Spherical and 

Gaussian Variogram models changing grid structure 

(17 in total starting from 10,000 voxels till 1000,000 

total voxels). Again for each structure changing 

number of simulations (NS) (for SIS six in total, NS= 

6, 20, 36, 48, 64 and 100 , and for SGS six also, 

NS=12, 24, 36, 48, 64 and 100). This means that for 

each SIS or SGS Method about 100 test have been 

executed and for each test the time of execution was 

measured precisely (with accuracy ±1.0 millisecond). 

All tests were performed in the way with the same 

parameters explained in the previous sections. The 

time that has been measured belongs only to the CPU 

time for simulations and writing results to disk. There 

is an extra time is needed for presenting outputs or 

other  arrangements was not included because this is 

not depend on number of voxels, the NS number or 

the method used. The characteristics of the CPU 

processor that has been used is Intel i7 2.20 GB runs 

by Windows 10 (64bit) operating system.  Table (1) 

and table (2) show the results of the execution time 

(in seconds) for both SIS and SGS methods 

respectively. Those results are demonstrated 

graphically in figure (19) for SIS and in figure (20) 

for SGS simulations.  

Table (1) SIS Method execution time in seconds 

 
 

 

 

 

 

Table (2) SGS Method execution time in seconds 

 

The x and y axis of the charts are Log-Log which 

show more details for smaller grid structures (voxels 

number). As we see from the figures that the 

relationship is linear in both cases (SIS and SGS). 

Those figures are also useful for making predictions 

by interpolation or extrapolation (unless the PC has 

same or similar parameters).  

 

 

Figure (19) the linear relationship between simulation 

time (seconds) and Total Number of Voxels (SIS Method) 
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Figure (20) the linear relationship between simulation 

time (seconds) and Total Number of Voxels ( SGS 

Method) 

The last results do not show clearly which method is 

faster SIS or SGS because there are many disturbing 

values when comparing the two tables above. Also 

we still do not know whether the relationship is also 

linear or in other words, whether the total number of 

voxels processed in one second using SIS Method or 

using SGS Method will be the same, if all other 

parameters are the same !. One more question; do the 

Spherical Variogram model behave in the same way 

as with the Gaussian in term of computational cost? 

For this purpose, another synthetic measure was 

created which calculates the speed of simulation by 

the following formula 

𝑆𝑝𝑒𝑒𝑑 =
𝑁𝑆 ∙ 𝑇𝑉

𝑇
 

Where Speed  refers to the total simulated voxel  that 

is generated in one second, 

NS refers to number of simulations, TV refers to 

Total Voxels and T refers to the time in seconds. 

The values in the following tables show (“Speed” 

Computations) the total number of voxels processed 

in a second using SIS Method fixed in table (3) and 

using SGS Method in table (4). The tables values 

have been illustrated in the figures (21) and (22) 

respectively.  

 

Table (3) Total Number of Voxels processed in a 

second  using SIS Method (Sph: Spherical 

model, Gau: Gaussian) 

 

Table (4) Total Number of Voxels processed in a second  

using SGS Method (Sph: Spherical model, 

Gau: Gaussian) 

 

The answers to all above suggested questions can be 

deduced from the figures (21) and (22).  

 In general, SIS Method is much faster than SGS 

Method 10-15%, as we see with the Spherical 

variogram and NS=100, SIS speed is about 

93000  
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Figure (21) the relationship between simulation 

“Speed” (Total Voxel/second) and number of voxels 

for one simulation Using SIS Method. 

 
Figure (22) the relationship between simulation 

“Speed” (Total Voxels/second) and number of voxels 

for one Simulation using SGS Method. 

voxels/sec. while it is near 85000 voxels/sec. for 

SGS. When using Gaussian variogram and 

NS=36, SIS speed is about 88000 voxels/sec. 

while SGS speed is about 66000 voxels/sec. 

 

 For both methods (SIS or SGS) the speed is not 

stable all the time, as we see some distributions 

in the beginning for grid total voxels number are 

less than 350,000. After that limit SGS speed 

becomes stable. On the other hand SIS speed has 

also some stability, but its performance becomes 

a little slower for larger grid total voxels. 

 

 One can also notice, in general, from tables (3) 

and (4) or from corresponding figure that when 

using the Spherical Variogram the speed is 

nearly 20%-25% faster than its level using the 

Gaussian variogram, no matter whether the 

simulation is performed by SIS or SGS method.   

 

Conclusions  

Statistical tests have proved that the Mean 

Uncertainty decreases (with both SIS or SGS 

Conditional Simulations) by either increasing number 

of total voxels (3D grid) or by increasing number of 

simulations (NS) or both. For SIS method this 

uncertainty becomes stable after the limit NS=64, 

while for SGS method the same feature becomes 

stable after NS=100 limit. 

The tests also proved that by either increasing number 

of total voxels (3D grid) or by increasing number of 

simulations (NS) Variance Uncertainty continue 

decreasing  beyond the limit NS=100, but for SIS 

method this feature is a little slower and for SGS 

method the decreasing is much faster. 

For both SGS and SIS Conditional Simulation 

methods, there is a clear linear relationship between 

Computational Cost (simulation time) and number of 

Voxels of the 3D grid no matter which CPU 

processor  is used. This conclusion helps to predict 

precisely the computational cost for large 3d grid 

structure and/or very large number of simulations 

(say NS>100). Note that each of SIS or SGS has its 

own chart and its own speed, thus we should not 

unify the two charts. 

The multiple tests (more than 200) proved that SIS  

method speed is 10-15% faster than SGS Method. 

The tests also proved that speed of simulations is 

faster 20%-25% using Spherical Variogram than 

when using the Gaussian one.   

 Special Matlab programs have been used in all 

implementation, and presentations of this 

research, with support from mGstat and SGeMS 

libraries for performing simulations only. This 

software is free online [see mGstat: Hansen 

T.M (2011)] and [SGeMS; Rémy N., Wu J., 

Boucher A. (2004)].   
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