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Abstract 

This paper presents a special scientific analytical methodology to conduct geostatistical spatial analysis, 

Variogram modeling and interpolation by Kriging method using terrain elevation data measured over 

geographical spatial unit, while accounting for anisotropic behavior of terrain within this unit. The 

methodology which includes the design of surface interpolation that gives weights to all data points, starts by 

performing geostatistical analysis and building the Variogram chart. The Variogram models that best 

representing the data is computed by using standard mathematical regression functions. The modeling 

process is achieved by using iterative methods and nonlinear least squares optimization process. The 

coherence between Variogram models constraint and the weights used in the kriging system ensures 

statistically the best unbiased estimators as well as minimum variances for the interpolated values. Kriging 

reduces the unrealistic smoothing surfaces inherited in other interpolation methods. It is also robust with 

respect to very small spatial differences in data points positions, where they are included in the process. There 

are a large number of semi-Variogram models that could be employed, although different models may lead to 

different interpolations. The study focuses on the ten most popular models (some of them recently discovered). 

The mean value of absolute variances provides valuable information help us to select which model is the best 

from several candidates. If anisotropy exists in variography according to different directions, then several 

Variogram models needs to be determined.  

Special Matlab programs were written by the author for implementing all stages of the above 

methodology. The study has shown that the interpolation process by Kriging fails in some cases and 

inaccurate in other cases Thus we need easy and fast computational tools performing many experiments at 

the same time giving clear representation results and final error analysis, so that the best solution is reached 

at last. This was the main and most important achievement of this study. 
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خاصة من أجل نمذجة "الفاريوغرام"  تحليلية تطبيق منهجية  
رتفاعية حقلية باستخدام طريقة "كريجينغ"اواستكمال بيانات   

 

 

 (1)محمد صالح العبداللهد. 
 

 ملخص
سيتكمال بطريقية "كريجينيغ" لبيانيات طبوغرافيية والا النمذجية للفياريمرمالمكيان  و يقدم هذا المقال منهجية علمية خاصة في  التحلييل اصحصيا   

ي بالحسبانمع الأخذ  ،سة ضمن مساحة جمرافيةيرتفاعية مقا ح عمليية السلوك غير المتجانس لتضاريس الأرض. تتضيمن المنهجيية تصيميماو يوض 
حصيا   لتمييرات الا يبيدأ بيعإذْ  جميعهيا، استكمال السيطح بععطياأ أونان لبيانيات النقياط يتبيع  ،رتفاعيات و إناياأ "مخطيط التميريية"جراأ تحلييل جيواح

اصلبياس عين طرييق تطبييق الحيل ال خطي   يجير ختييار النميوذا الأفضيل. اوأخييراو  ،منحنيات رياضية معيارييةذلك نمذجة "الفاريوغرام" واصلباس ب
مين خي ل الع  ية المتينية بيين ايرط تبعيية  ت الحديية الصيمرى لمربعيات الرواسيب.لنهايياإليى بالتربيعات الصمرى والتقريب المتتال  حتى الوصول 

 ،نموذا الفاريوغرام من جهة والأونان المستخدمة ف  نظام كريجينغ من جهية أخيرى، نضيمن إحصيا ياو الحصيول عليى أفضيل تقيديرات غيير منحيان 
سييتكمال الأخييرى. ق الاا ييريقيية تيي اير السييطوس الملسيياأ (الكاذبييةل الم نميية لطر نتفييادى بهييذط الط وتباينييات أصييمرية للقيييم المسييتكملة. أيضيياو نقلييل أو

هناليك عيدد كبيير مين نمياذا الفياريوغرم التي  يمكين  وأخيراو كريجينغ  يسمح بوجيود نقياط  ريبية جيداو مين بعضيها اليبعض ويسيتوعبها في  العمليية.
وبعيض  ،الدراسة على عار  نماذا هي  الأكاير اسيتخداماو  ركنتمنها  د يؤد  إلى نتيجة استكمال مختلفة.  ك  الرغم من أن  مع عليها، و  الاعتماد

ختييار النميوذا الأمايل بيين مجموعية مين النمياذا الصيالحة. معلومات مفيد  لا بالقيمة المطلقة كتااف. تقدم  يمة وسط  التبايناتحديث الا  منها
إدخيال أكاير مين نميوذا واحيد  بالحسيبانافه من مخططات التميرية باتجاهيات مختلفية، عنيدها يجيب الأخيذ ف  حالة عدم وجود التجانس الذ  نكت

 ف  الحل. 
ر أابتيت الدراسية أن عمليية أعي ط.  هياكل  ختبيار مراحيل المنهجيية ا بهيدفسيتخدام برنيامج ميات ب االمؤلف مجموعة من البرامج الخاصية ب حض 

ختبيارات اليى أدوات سيهلة وسيريعة تقيوم بعميل بعيض الحيالات وغيير د يقية في  حيالات أخيرى ولهيذا نحتياا إف   تخفقستكمال بطريقة كريجينغ الا
ط كانيت بقصيد الوصيول إليى أفضيل حيل. هيذ هكليذليك و  ،  ف  آن واحد وتعط  نتا ج ومخططات واضحة وتحليل نها   للأخطاأ ف  كل تجربةيدعد

 ما تم إنجانط من خ ل هذط الدراسة.من أهم 
  

 
 كلية الهندسة المدنية، جامعة دمشق، سورية.  (1)
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Introduction 

Spatial statistics and geostatistics have developed to 

describe and analyze the variation in both natural and 

man-made phenomena on, above or below the land 

surface. Spatial statistics includes any of the formal 

techniques that study entities that have a spatial index 

(Cressie 1993). Geostatistics is embraced by this 

general umbrella term, but originally it was more 

specifically concerned with processes that vary 

continuously, i.e. have a continuous spatial index. 

The term geostatistics applies essentially to a specific 

set of models and techniques developed largely by 

Matheron (1963) in the 1960s to evaluate recoverable 

reserves for the mining industry. These ideas had 

arisen previously in other fields; they have a long 

history stretching back to Mercer and Hall (1911), 

Youden and Mehlich (1937), Kolmogorov (1941), 

Matérn (1960) and Krige (1966).  

Geostatistics have since been applied in many 

different fields, such as agriculture, fisheries, 

hydrology, geology, meteorology, petroleum, remote 

sensing, soil science, GIS and so on. In most of these 

fields the data are fragmentary and often sparse, 

therefore there is a need to predict from them as 

precisely aspossible at places where they have 

notbeen measured. This paper covers two of the 

principle techniques of geostatistics that solve this 

need for prediction; the Variogram Estimation and 

Variogram Modeling. The first one depends on 

geostatistics and spatial statistics while the second 

one depends on mathematics. 

A brief summary only is given here of the theory that 

underpins geostatistics (formore detail see Journel 

and Huijbregts, 1978; Goovaerts, 1997; Webster and 

Oliver 2007). Most spatial properties vary in such a 

complex way that the variation cannot be defined 

deterministically. To deal with this spatial uncertainty 

a different approach from the traditional deterministic 

methods of spatial analysis was required that relies on 

a stochastic or probabilistic approach. The basis of 

modern geostatistics is to treat the variable of interest 

as a random variable. This implies that at each point x 

in space there is a series of values for a property, 

)(xZ , and the one observed, )(xz , is drawn at 

random according to some law, from some 

probability distribution. At x, a property )(xZ  is a 

random variable with a mean μ and variance 2 . The 

set of random variables, )( 1xZ ,…, )( NxZ  is a 

random process, and the actual value of Z observed is 

just one of potentially any number of realizations of 

the random process. In classical statistics this set of 

observed values, there alization, is the population. 

The modeling and simulation of natural phenomena 

are based on the assumption that the a process

}),({ Dxxz   is a realization of a stochastic (or 

random) function )(xZ  where Dis a fixed subset in

dR (a positive d-dimensional space). Matheron 

(1962) called the-quantity )(xZ a regionalized 

random variable, allowing the presence of 

inhomogeneity in the physical process as well as 

emphasizing the natural continuity of space within 

the subset D. It has been established that fitting 

invalid covariance model to the Variogram can yield 

to a negative-definite variance )(YVar , where Y 

represents any linear combination of )(xZ . The 

problem when using such models, is that it does not 

guarantee a unique solution of the ordinary kriging 

system and the same holds for any kind of simulation 

based on kriging, thus from this perspective we say 

that they are invalid. The idea is then to search for a 

valid Variogram model that, as a measure of 

correlation, is closest to the experimental Variogram. 

(Some authors call )(h  as the Variogram instead of 

Semi variogram). The space of valid variograms is a 

large set of parametric family or ‘basic models’, that 

are known to be positive-definite. We can also 

enlarge this family by combining those functions to 

form new ones that are also positive-definite and 

produce what is called a nested structures or nested 

models. Some preliminary assumptions have to be 

made in order to make the statistical inference about

)(xZ  possible, thus we start from definition of those 

hypothesis that form the basis of most geostatistical 

theory. 
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Second-order Intrinsic Stationarity 

Assumptions  

Stationarity exists when the probabilistic distribution 

of )(xZ  is invariant and does not depend on x. let us 

call m the trend (or drift), which can be expressed as 

the expectation of the random variable )(xZ  

)2(),)(Pr()(

)1(,))((

DxzxZzF

DxmxZE

x 

  

In order to estimate an optimal linear predictor (using 

Kriging for example), an additional assumption 

isneeded. Having sufficient number of sampled pairs

njixzxz ji ,...,1),(),(),(  , where Dxx ji ),(  refer to 

two different locations in D , and linked by a vector

jiij xxh  , let the function  

)3(,),()())(),(( DxxhCxxCxZxZCov jiijjiji 

 

defines the Covariogram, or the stationary 

covariance function. Any random function )(xZ

satisfying (1) and (2) and possess a stationary 

covariance function, i.e. the Covariogram (3) exists, 

is said to be a Second-order Stationary Process. 

Furthermore, if )( ji xxCov   is only a function of 

hxx ij  only, then )(Z  is called the isotropic 

Covariogram. On the other hand, if the random 

function )(xZ satisfying (1) and (2) and possess a 

stationary variance function, i.e. the Variogram (4) 

exists, then it is said to be Intrinsically Stationary 

Process. It is clear that the Second-order Stationarity 

hypothesis implies the Intrinsic Stationarity, but the 

converse is not true.  

Variogram and Semivariogram 

Observations closer together tend to be more alike 

and statistically correlated than observations farther 

apart. In geostatistics, this idea of autocorrelation is 

quantifiedthrough a function called a semivariogram. 

The quantity )(2 h that defined by,  

)4(,),(2)(2))(),(( DxxhxxxZxZVar jiijjiji  

 

Which is a function of only the increment
jiij xxh 

is called the Variogram and )(h or Semivariogram 

by Mather on (1962). The latter name is most 

popular, (and will be used frequently through this 

paper). Its estimation is achieved by takinghalf of the 

average square difference between two samples 

valuesapproximately separated by a predefined lags 

h:  





)(

1

2 )5())()((
)(2

1
)(

hN

k

jix xZxZ
hN

h  

Where: )(hN is the number of distinct pairs ijp  

belonging to a separation vector h, and )(),( ji xZxZ  

are the sampled values at the beginning location and 

end location respectively. Thus, we can define the 

Variogram function as the variance of only the 

increment vector h.  

Cross Variogram  

Let

    DxxZxZxZxYxYxY nn  ,')(),...,()(,')(),...,()( 11
 

be two co-located spatial processes, where each is 

assumed to possess a Variogram thus  

DxxxZxZVarxx

xYxYVarxx

jijijiZ

jijiY





,)),(),(()(2

)6())(),(()(2




 

There are two ways to generalize the previous 

notations to account for cross-dependence between 

the two processes )(Y and )(Z . The most natural one 

for multivariate spatial prediction (Cokriging) is  

)7(,)),(),(()(2 DxxxZxYCovxx jijijiYZ   

In similar manner to the Semivariogram, another 

measure of spatial variability used by Cokriging 

under special conditions called Cross Semivariogram, 

due to Journel and Huijbregts (1978), and can be 

estimated by taking half of the average of cross 

product of all sampled pairs, having two different 
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attributes, and associated with two different locations 

separated by a predefined separation lag h,  





)(

1

)8()].()()][()([
)(2

1
)(

hN

k

jijiYZ xZxZxYxY
hN

h

 

Covariogram and Correlogram  

The function DxxhCxZxZCov jiijji  ,),())(),(( , is 

given earlier by expression (8), defines the 

Covariogram. Notice that this statistics has another 

name like Auto-Covariance function known in time 

series analysis. The Covariogram can be estimated 

using the following formulae,  

 













)(

1

)(

1

)(

1

)10()(
)(

1
,)1()(

)(

1

)9()()()(
)(

1
)(

hN

k

jxj

hN

k

ixi

hN

k

xjxiji

xZ
hN

mxZ
hN

m

xxxZxZ
hN

hC

 

On the other hand, the Correlogramis another spatial 

statistics denoted by )(h (in time series terms this is 

called Auto-Correlation function). This statistics can 

be estimated under the assumption that 0)( hC as 

follows, 

)11(
)0(

)(
)(

C

hC
h   

Checkthat 1)( h when )0()()( ChChC   .  

The quantity )0(C  is called the sill of the 

Semivariogram. In fact the sill )0(C  defines the upper 

bound of the Semivariogram model for h  or 

practically for
0hh   where

0h  defines the range. 

This quantity can be decomposed into a Variogram

)(h  and Covariogram )(hC . First consider the 

relation  

)12(,)),(),((2

))...(())(())(),((

DxxxZxZCov

xZVarxZVarxZxZVar

jiji

jiji





.
 

Recall form (3) and (4), 

DxxhxZxZVar

hCxxCxZxZCov

jiijji

ijjiji





,),(2))(),((

)()())(),((

 .
 

In addition, under the second order stationarity 

assumption we can write 

)13()0(]))([())(())(( 2 CmxZExZVarxZVar ji 

 

)15(
)0(

)(
1

)0(

)(
)(

)14()()0()(

)(2)0(2)(2

C

h

C

hC
h

hCCh

hCCh













 

A Variogram function can be deduced from a 

covariance function using the formula (14), but in 

general the reverse is not true because some 

Semivariogram models like the linear models or 

power models have no covariance function 

counterparts, as they grow without bounds. If the 

assumption that the mean of the tail values
xim , is not 

the same as the mean of the head values
xjm , then the 

Correlogram, is slightly defined in different way,  

)18(
)(

1
)(

)17(
)(

1
)(

)16(
)()(

)(
)(

)(

1

22

)(

1

22




















hN

k

hj

hN

k

hi

mx
hN

hC

mx
hN

hC

hChC

hC
h

 

Positive definite conditions  

Let )(xZ  be a stationary random process with 

expectation m and covariance 0)( hC  or 

Semivariogram )(h . Let Y be any finite linear 

combination of )(xZ as follows,  





n

i

ii xZY
1

)19()(  

for any set real numbers or weights vector 

  niW i  1, . This linear combination and its 

variance must be positive-definite, that is  
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i j

jiji xxCYVar )20(0)()(   

The last expression can be written in matrix form  

)21(0)(  WCWYVar h

t  

Where
hC  is the Covariance matrix that is defined by 

a covariance function 0)( hC  and a set of points
ix , 

thus the function )(hC  is said to be positive-definite 

in order to ensure the positive-definiteness of the 

variance )(YVar . On the other hand, the 

Semivariogram )(h  is said to be conditionally 

negative-definite function in order to guarantee the 

positive-definiteness of )(YVar . If we rewrite (14) in 

matrix form corresponding to a set of points
ix ,  

)22(0 hh CC   

where the matrix
h represents all Semivariogram 

functions )(h , 
0C  is a matrix of the same size as

h

whose all elements are equal to the sill )0(C  of 

Semivariogram. Therefore  

)23(00)(  WWWCWYVar h

t

h

t  

In the case when the sill does not exist and only the 

intrinsic hypothesis is assumed, then the variance of 

Y is defined on the condition that 

)24(0)(0  WWYVar h

t

i

i .
 

Thus when handling linear combination of random 

variables, then the Semivariogram can only be used 

together with conditions on the weights guaranteeing 

its existence. 

Behavior of the phenomenon near the 

origin(Nugget Effect) 

The Semivariogram expectation at a very small scale, 

which describes the behavior of phenomenon near the 

origin, is known as the nugget effect, after Matheron 

(1962). This is because it is believed that micro-scale 

variation is causing a discontinuity near the origin. In 

terms of Semivariogram prediction, nugget effect
0c  

is defined by )25(0)( 00  ch h  

The behavior at a very small scale is very important 

as it indicates the type of discontinuity of the 

phenomenon near the origin, and we can distinguish 

three types of phenomena:  

 continuous and differentiable near the origin; 

0,0)(  hh  

 discontinuous or non-differentiable near the origin, 

then we have nugget effect;  

0,0)( 0  hch  

 white noise process with constant variance and zero-

covariance (pure nugget);  

hch  ,0)( 0 . 

Statistically speaking, if the phenomenon is 

continuous (or expected to be continuous) at the 

micro-scale, then the only reason for 00 c  is the 

measurement error. This means that if the Variogram 

is modeled with different sampling schemes or using 

different approaches, the value of
0c would fluctuate 

around its true value, thus
mems ccc 0

 , where
msc  

represents the nugget effect at the micro-scale, while 

mec  represents measurements error. In practice, there 

is a problem to determine
0c  from data whose 

separations h are too large to capture accurate 

micro-scale information. Typically, it is determined 

by extrapolation of  Variogram estimates from lags 

closest to zero.  

Parametric Isotropic Semivariogram  

Models 

A review of the most frequently used isotropic 

Semivariogram models are given, as well as the 

general conditions that a model should satisfy in 

order to be valid. Those models can be classified into 

two categories: 

models with a sill(or transition models) and Models 

without a sill (recall from a previous section that 

forthe second category a covariance function does not 

exist and only a Variogram model )(h is defined). 
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To the first category goes: the Spherical model, the 

Exponential model, the Gaussian model, the Rational 

quadratic model and the hole-effect model, while To 

the second category goes: the Linear model, the 

nugget effect model, the power model and the 

Logarithmic model.  

 

FIG.1  The square root differences cloud for elevation data 

There are many parametric functions that satisfy the 

properties of the semivariogram (see, e.g., Journel 

and Huijbregts 1978; Chiles and Delfiner 1999). We 

say that a semivariogram model is valid in d 

dimensions (i.e., in dR ) if it satisfies the folloing 

conditions: (let’s refer to )( ixZ  by Z(s) and )( jxZ  by 

Z(u) for simplicity): 

 )26(),()( hh     

the autocorrelation between Z(s) and Z(u) is the same 

as that between Z(u) and Z(s)]. 
 

 ,0)0(  , since, Var(Z(s) − Z(s)) = 0. (27) 

 ,,0)/)((
2

 hashh  

 )( must be conditionally negative definite, that is 
 

for any number of 

locations  {s(i), 

i=1,…,m} and real numbers {a(i),….,a(m)} satisfying  





m

i

ia
1

0   this condition is analog of the positive-

definite condition for variance-covariance matrices. 

Here below is given some of the ten most popular 

models: 

 Linear Model   

,0,),( 0 







 h

a

h
cch   (28) 

 

 Spherical Model    
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(29) 

 

 Gaussian Model  

0,)exp(1),(
2

2

0 













 h

a

h
cch

g

g

 (30) 

 

 Exponential Model   

0,)exp(1),( 0 







 h

a

h
cch

e
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(31) 
 

 Circular Model   (32)  
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 K-Bessel (Wittle) Model  

,),11),( 0 























w

K

w

w
a

h
Bessel

a

h
cch 

(33) 
 

 Sine Model (Hole Effect model)  
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(34) 
 

 Pentaspherical Model   
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(35) 

 Rational Quadratic Model:     

 

0)/,1/(),(
22

0  hahhcch rr

(36) 

 Power Model   

,0,1,),( 0 







 hp

a

h
cch

p

 (37) 
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Remark:Parameters

.0,0,0,)',,( 00  rsrs accacc refers to the three 

parameters : Nugget effect, Sill and Range 

respectively (FIG.3).Parameters ,...},,,,,{ wkrges cccccc

in all models refers to the Sill. ,...},,,,,{ wkrges aaaaaa

in all models refers to the Range. All models are valid 

in 1, dRd  except Spherical, Sine and 

Pentaspherical models are valid in 1, dRd .  

There are many more parametric semivariogram 

models not described here [see, Armstrong (1999), 

Chiles and Delfiner (1999), and Olea (1999) ].In 

addition, the sum of two semivariogram models that 

are both valid in dR is also a valid semivariogram 

model in dR , so more complex models can be 

generated by adding two or more of these basic 

semivariogram models (Christakos 1984) 

 
 

FIG.2Typical semivariogram with Sill, Range and Nugget Effect 

Semivariogram models created this way are referred 

to as models of nested structures. 

FIG.3Some theoretical semivariogram models showing Sill 

and Range Positions 

Estimating the Semivariogram 

The semivariogram can be estimated easily from 

data {𝑍(𝑠𝑖) ∶  𝑖 =  1, . . . , 𝑁}  under the assumption of 

intrinsic stationary so that equations (6) and (11) 

hold. Using rules of expectation, we can write the 

Variogram as 

2𝛾 (ℎ) =  𝑉𝑎𝑟(𝑍(𝑠 +  ℎ) −  𝑍(𝑠))  (38) 

=  𝐸[(𝑍(𝑠 +  ℎ)  −  𝑍(𝑠))2]  − [𝐸(𝑍(𝑠 +  ℎ)  −  𝑍(𝑠))]2 

From equation (6), [𝑍(𝑠𝑖)] = 𝑚  ∀𝑠𝑖 ∈ 𝐷, so the second 

term is zero. Thus, to estimate the Variogram we 

need only to estimate𝐸[(𝑍(𝑠 +  ℎ)  −  𝑍(𝑠))2] Since 

expectations are just statistical averages, one way to 

estimate this term is to average all observed squared 

differences[𝑍(𝑠𝑖)  −  𝑍(𝑠𝑖)]2for pairs of observations 

taken thesame distance apart in the same direction. 

This is the rationale behind the method of moments 

estimator of the semivariogram, given by 
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where N(h)is the set of distinct pairs separated by h 

[i.e., N(h) = {(𝑠𝑖,𝑠𝑗) :𝑠𝑖 − 𝑠𝑗= h, i, j = 1, . . . , n} and 

|𝑁(ℎ)|= the number of distinct pairs in N(h)]. Last 

Equation gives what is often referred to as the 

classical semivariogram estimator. It gives point 

estimates of γ (·) at observed values of h. If the 

process is isotropic, we need only consider pairs lag 

||h|| apart. If the process is anisotropic, the 

semivariogram can be estimated in different 

directions by selectinga particular direction and 
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averaging pairs of data lag ||h|| apart in that 

particulardirection. With irregularly spaced data, 

there may be only one pair of locations that is h apart 

(two for||h||). Averages based on only one or two 

points are poor estimates with large uncertainties. We 

can reduce this variation and increase the accuracy of 

our point estimates by allowing a tolerance on the 

lags. Thus, we will define tolerance regions and 

group the sample pairs into these regions prior to 

averaging. This is analogous to the procedure used in 

making a histogram, adapted to two dimensions 

(FIG.4). 

FIG.4 

Tolerance regions for semivariogram estimation 

Typically, one specifies tolerance regions through the 

choice of five parameters: the direction of interest; 

the angle tolerance, which defines a sector centered 

on the direction of interest; the lag spacing, which 

defines the distances at which the semivariogram is 

estimated; the lag tolerance, which defines a distance 

interval centeredat each lag; and the total number of 

lags at which we wish to estimate the semivariogram. 

Tolerance regions should include 20-30 pairs of 

points each to ensure that the empirical 

semivariogram at each point is well estimated 

(Journel and Huijbregts 1978). 

Usually, a set of directions and associated angle 

tolerances are chosen together so that they completely 

cover two-dimensional space (Fig.5 and 6). 

FIG.5 Empirical directional semivariograms and fitted models 

One should construct lag in tervalsso that the total 

number of lags is between 10 and 25 in order to see 

the structure of the semivariogram. One should be 

careful of the use of very short maximum lag 

distances. The semivariogram is a picture of your 

data spatially: the sill and the range, if they exist, 

provide estimates of the processvariance and the zone 

of influence of the observations, and information at 

largerlags can indicate large-scale trends. 

 

FIG.6Empirical directional semivariogram with 2D 

representation showing )(h (z-axis), lags(x-axis) and 

directions(y-axis) 

Fitting Semivariogram Models 

The empirical semivariogram 𝛾(∙) is not guaranteed 

to be conditionally nonnegative definite. This is not a 

problem if we limit ourselves to inferences about 
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thespatial continuity of the process, but it can lead to 

problems when used for spatialprediction and 

mapping where we need reliable estimates of 

prediction uncertainty. Thus, we will need to find a 

valid theoretical semivariogram function that close 

lyre flects the features of our empirical 

semivariogram. We limit our choices to aparametric 

family of theoretical variograms (like those described 

in section Parametric Isotropic Semivariogram 

Models in this paper)and seek to find the parameter 

estimates that best fit the data. 

Nonlinear Least Squares Regression Method 

The idea here is to select a the oretical semivariogram 

family and find a vector of parameters �̂� that makes 

this theoreticalmodel “close enough” to the empirical 

semivariogram. Let 𝛾(∙) be the empirical 

semivariogram estimated at K lags, h(1), . . . , h(K) 

and let 𝛾(ℎ; 𝜃)be the theoretical semivariogram 

model whose form is known up to θ. Since the 

relationship between𝛾(ℎ) and h is usually nonlinear, 

nonlinear least squares regression can be used 

toestimate θ. Nonlinear ordinary least squares (OLS) 

finds �̂� minimizing the squared distance between the 

empirical and theoretical semivariograms, that is, 

minimizing 

(49) 

However, the estimates 𝛾(ℎ(𝑗))are correlated and 

have different variances, violating the general 

assumptions underlying OLS theory. The usual 

statistical adjustment to OLS when observations are 

correlated and heterois generalizedleast squares 

(GLS). Cressie (1985) applied nonlinear GLS to 

semivariogram estimation, finding �̂� minimizing the 

objective function 

[𝛾 − 𝛾(𝜃)]′ ∙ 𝑉(𝜃)−1 ∙ [𝛾 − 𝛾(𝜃)]    (50) 

𝑉(𝜃) the variance–covariance matrix that depends on 

𝜃is unknown and 𝜃 is unknown, so the best estimator 

is computed iteratively from starting values that are 

improved at each iteration until the objective function 

is minimized. Taking 𝑉(𝜃) ≡ 𝐼gives the OLS 

estimator, and taking  

𝑉(𝜃) ≡ 𝑑𝑖𝑎𝑔{𝑉𝑎𝑟(𝛾(ℎ1)}, … , 𝑉𝑎𝑟(𝛾(ℎ𝑘)}     (51) 

gives a nonlinear weighted least squares (WLS) 

estimator. Determining the elements of𝑉(𝜃) requires 

knowledge of the fourth-ordermoments of Z. Cressie 

(1985) showed that a nonlinear WLS estimatorbased 

on the expression: 

𝑉𝑎𝑟[𝛾(ℎ𝑗)] ≈ 2[𝛾(ℎ𝑗); 𝜃]
2

/𝑁(ℎ𝑗)              (52) 

yields an estimation procedure that often works well 

in practice. Thus, weighting the OLS objective 

function inversely proportional to the (approximate) 

variance of the empirical semivariogram estimator 

gives an estimator of θ that minimizes the weighted 

regression sum of squares: 

𝑊𝑅𝑆𝑆(𝜃) = 1

2
∑

𝑁(ℎ𝑗)

[𝛾(ℎ𝑗);𝜃]
2

𝑘
𝑗=1 [𝛾(ℎ𝑗) − 𝛾(ℎ𝑗); 𝜃]2   (53) 

This approach is an approximation to WLS and offers 

a pragmatic compromise between OLS and GLS. It 

gives more weight where there is more “data” 

[large(ℎ𝑗) ] and near the origin [small𝛾(ℎ𝑗); 𝜃], thus 

improving on OLS. Although it will not be as good as 

GLS, but ease of computation is a definite advantage. 

It can be used even when the data are not Gaussian, 

and empirical studies have shown (Zimmerman 1991) 

this approach to be fairly accurate in a variety of 

practical situations. 

InverseDistance Interpolation 

An inverse-distance interpolator is simply a weighted 

average of neighboring values. The weight given to 

each observation is a function of the distance between 

that observation’s location and the grid point 𝑠0 at 

which interpolation is desired.Mathematically, the 

general inverse-distance interpolator is written as 

 (54) 

Here𝑑0,𝑖 is the distance from the grid point location 

𝑠0 to the ith data location𝑠𝑖. The weighting power, p, 

is selected to control how fast the weights tend to 

zero as the distance from the grid node increases, 

based on assumed increasing similarity between 



Damascus University Journal For The Engineering Sciences         Vol. 34 – No.1 - 2018 

17 

 

observations taken closer together. As the power 

increases, the contribution (to the interpolated value) 

from data points far from the grid nodedecreases. 

Distance powers between 1 and 3 are typically 

chosen, and taking p = 2gives the popular inverse-

distance-squared interpolator. [Burrough (1986)]. 

Interpolation by Kriging 

Kriging is a geostatistical technique for optimal 

spatial prediction. We emphasize the distinction 

between prediction, which is inference on random 

quantities, and estimation, which is inference on fixed 

but unknown parameters. Georges Mather on, the 

founding father of geostatistics, introduced this term 

in one of his early works developing geostatistical 

theory (Matheron 1963).There are many different 

types of kriging, differing by under lying assumptions 

and analytical goals. One can consult some references 

to learn more about Kriging methods, (e.g., Journel 

and Huijbregts 1978; Isaaks and Srivastava 1989; 

Cressie 1993; Wackernagel 1995; Chiles and Delfiner 

1999; Olea 1999; Stein 1999).The basic and most 

popular method is Ordinary Kriging which will be 

briefly discussed here. 

Ordinary Kriging (OK):Assume that 𝑍(∙)is 

intrinsically stationary process [i.e., having unknown 

mean, µ, and known semivariogram, 𝛾(ℎ), where 

{𝑍(𝑠𝑖): 𝑖 =  1, . . . , 𝑁}represent the data and we want to 

predict the value of the 𝑍(∙)process at an unobserved 

location,𝑍(𝑠0), 𝑠0 ∈ 𝐷. As with the inverse distance 

methods described in previous section, the ordinary 

kriging (OK) predictor is a weightedaverage, 

(55) 

However, instead of specifying an arbitrary function 

of distance, we determine the weights based on the 

data using the semivariogram and two statistical 

optimality criteria: unbiasedness and minimum mean-

squared prediction error. For unbiasedness, the 

predicted value should, on average, coincide with the 

value of the unknown random variable, 𝑍(𝑠0) In 

statistical terms. Unbiasedness constraint 

requires𝐸[�̂�𝑜𝑘(𝑠0)] = 𝐸[𝑍(𝑠0)] = 𝜇, which means 

that∑ 𝜆𝑖 = 1𝑁
𝑖=1 . To ensure the second optimality 

criterion, we need to minimize mean-squared 

prediction error (MSPE), defined as𝐸[�̂�𝑜𝑘(𝑠0) −

𝑍(𝑠0)]
2
, subject to the unbiasedness constraint. One 

method for solving constrained optimization 

problems is the method of Lagrange multipliers. With 

this method, we need to find𝜆1 , … , 𝜆𝑁and a Lagrange 

multiplier, m, that minimize the objective 

(56) 

Function. The second term is essentially a penalty, 

minimized when∑ 𝜆𝑖 = 1𝑁
𝑖=1 , thus ensuring that our 

overall minimization constraint. Now this implies that 

 

(57) 

Taking expectations of both sides of this equation 

gives 

 

(58) 

Thus the equation (56) becomes 

(59) 

To minimize (59), we differentiate with respect to 

𝜆1 , … , 𝜆𝑁 and m in turn and set the partial derivatives 

equal to zero. This gives a system of equations,   

referred to as the ordinary kriging equations, 

(60) 

We solve these equations for 𝜆1 , … , 𝜆𝑁(and m), and 

use the resulting optimal weights in equation (55) to 

give the ordinary kriging predictor. Note that 

�̂�.(𝑠0) has weights that depend on both the spatial 

correlations between, 𝑍(𝑠0) and each data point 

𝑍(𝑠𝑖): 𝑖 =  1, . . . , 𝑁, and the spatial correlations 

between all pairs of data points 𝑍(𝑠𝑖)and 𝑍(𝑠𝑖): 𝑖 =

 1, . . . , 𝑁 and 𝑍(𝑠𝑗): 𝑗 = 1, . . . , 𝑁 . usually we write the 

Kriging System of Equations(60) in matrix form as 
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(61) 

Note that we must calculate 𝜆0for each prediction 

location 𝑠0. However, only the right-hand side of 

equation (61) changes with the prediction locations 

through 𝛾0. Since the coefficient matrix depends only 

on the data locations and not on the prediction 

locations, we need only invert this w matrixonce and 

then multiply by 𝛾0vector to obtain a prediction for 

any 𝑠0 ∈ 𝐷. The minimized MSPE, also known as the 

kriging variance, which is a measure of the 

uncertainty in the prediction of𝑍(𝑠0), is obtained as 

follow 

 

 

(62) 

 

 

Implementation in Matlab(3 stages): 

(1)Variogram Estimation,  

(2)Semivariogram Modeling, 

(3) Kriging Interpolation. 

 Dataset that has been used for testing programs 

performance (which cover area of 1000×1000m)is 

given in the form of 3-column matrix (x,y,z) . It is a 

terrain elevation data consist of 266 points distributed 

as shown in (Fig.8).  
 

 
Fig.8 Dataset Locations and their distribution (color 

indicate the z-value) 

 

 Data in the study has been downloaded from internet 

which was related to a small forested area in 

Wisconsin, USA, provided by Department of Forest 

Resources, University of Minnesota. 

 

 By constructing histogram of the dataset values (z 

values) (Fig.9), we see that some z-values have very 

large frequencies (like z=630 and z=650) and this 

means that lower areas is represented by large 

number of points. 

 

  

 
Fig.9 Data histogram shows the frequency of Z-Values 

 

 EstiamteVariogram.m is a Matlab functions were 

written by the author for computation and 

visualization the variogram. It calculates the 

experimental variogram for concrete number of lags-

distances and directions (anisotropic variogram).  

Program Input: 

  x - array with coordinates. Each row is a location in a 

size(x,2)-dimensional space (e.g. [x y elevation]).   y 

- column vector with values of the locations in x. 

nrbins - number bins the distance should be grouped 

into(default = 20). 

maxdist - maximum distance for variogram calculation 

(default = maximum distance in the dataset / 2).  

type -   'gamma' returns the variogram value (default) 

'cloud1' returns the binned variogram cloud , 'cloud2' 

returns the variogram cloud . 

plotit - true -> plot variogram - false -> don't plot 

(default). subsample - number of randomly drawn 

points if large datasets are used. scalar (positive 

integer, e.g. 3000) inf (default) = no subsampling 

anisotropy - false (default), true (only in 2D) 
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thetastep - if anisotropy is set to true, specifying 

thetastep allows you to change the angle width 

(default 30 degrees) 

Program Output: 

  d - structure array with distance and gamma – vector 

plot gamma results as shown below (Fig.10). 

 The Program (EstiamteVariogram.m ) which is 

Matlab function,  computes also the Variogram in all 

possible directions defined by separation distances is 

called lag (number of lag distances = 22).  

 

 
Fig.10 the Isotropic Variogram of our data 

 

 One can visualize Variogram anisotropy, which is 

computed and stored in matrix form. This feature is 

very useful to detect certain directions where 

variogram shows distinct characteristics. 

Thequadratic ‘lowess’ interpolanthas been used to 

create a smooth surface representation. Interpolation 

here gives better understanding of anisotropic 

variogram than plotting the original one. As we see 

below the behavior of the data for each direction is 

different (directions are given in degrees). (Fig.11). 

 The programs VarFitModelm is written by the author 

and used for Semivariogram Modeling and 

visualization of results using the dataset (shown in 

Fig.8) as 2D irregularly spaced data. VarFitModel.m 

a Matlab function that performs a least squares fit of 

various theoretical variograms to an experimental, 

isotropic variogram. The user can choose between 

various bounded (e.g. spherical) and unbounded (e.g. 

exponential and power) models. 

 

 A nugget variance can be modeled as well, but higher 

nested models are not supported. VarFitModel uses 

Matlab fminsearch function, but it should be used 

carefully, because  the problem is, that it might return 

negative variances or ranges. The variogram fitting 

algorithm is in particular sensitive to initial values 

below the optimal solution.  Hence, visually 

inspecting the data and estimating a theoretical 

variogram by hand should always be your first 

choice. Note that for unbounded models, the supplied 

parameter a0 (range) is the distance where gamma 

equals 95% of the sill variance. The returned 

parameter a0, however, is the parameter r in the 

model. The range at 95% of the sill variance is then 

approximately 3*r. 

 

   
 

Fig.11  Anisotropic Variogram  (𝛾 values vs. lag Distances 

and   Directions in degrees). As we see that Variability 

behavior in the East-West Direction is completely different 

from that behavior in North-South Direction 

 Ten most popular Fitting models types that have been 

analyzed and fitted to the empirical VariogramData. 

Theyare:Spherical,Gaussian, Exponential,Circular, 

Hole Effect (Wave), Pentaspherical, Rational 

Quadratic,, Power,K-Bessel (Wittle) and.BLinear 

model gives strange output for Kriging so it is 

avoided. Below 10 Models (Figures 12,…,20) have 

been fitted with the empirical variogram data using 

program EstiamteVariogram.m . Table.1 shows the 

summary of semivariogram results.  
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Table.1 Summary of the Semivariogram Analysis Results 

 
 

 

Model parameters (shownon each of the figures)are: 

model Name, model Type, Sill, Range, RMS which 

reflects the goodness of fit, and model function. 

 

FIG.12  Fitting Spherical Model 

 

Fig.13 Fitting Gaussian Model 

 

Fig.14 Fitting Exponential Model 

 

Fig.15  Fitting Circular Model 

 

Fig.16Fitting Hole Effect (wave) Model 

Fig.17   Fitting Pentaspherical Model 
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Fig.18  Fitting Rational Quadratic Model 

 

Fig.19 Fitting Power Model 

 

Fig.20  Fitting Whittle Model 

 

Implementing Kriging Interpolation  

 

Krig Interpolate.mis a Matlab function written by the 

author, which uses ordinary kriging to interpolate a 

variable z measured at a locations (x, y) at unsampled 

locations (xi, yi).The function requires the variable 

vstruct that contains allnecessary information on the 

variogram. vstruct is the main output argument of the 

previous function VarFitModel.m.  The function 

always includes all observations to estimate values at 

unsampled locations. This may not be necessary 

when sample locations are not within the 

autocorrelation range but would require something 

like a k nearest neighbor search algorithm. Thus, the 

algorithms works best for relatively small numbers of 

observations (100-500).Note that kriging fails if there 

are two or more observations at the same location.  

Input arguments: 

vstruct   structure array with variogram information 

as returned fromVarFitModel.mfunction. 

x,y       coordinates of observations 

z         values of observations 

 xi,yi    coordinates of locations for predictions  

chunksize number of elements in zi that are 

processed at one time. The default is 100, but this 

depends largely on the available main memory and 

numel(x). 

Output arguments: 

zi   kriging predictions, zivar   kriging variance 

 

Summary of Resultsand Conclusions 

Table.1 shows the summary of semivariogram results. 

From the table we see that the average Sill is 988, the 

minimum is 950.3 (Blinear model) and the maximum 

is 998.6(Power model is excluded). The average 

Rangeis 381.7 the minimum is 268.2 (Blinear model) 

and the maximum is 528.0 (Rational Quadratic 

model). The average RMSis 79.9 (which indicates 

goodness of fit) fluctuates between 56.3 and 135.2, 

thus Exponential and Power models are not among 

the best fitting models. 
 

The Final digital terrain model (DTM)is generated (as 

contour lines) by above programmed Kriging 

Function (krigInterpolate.m) and is visualized by a 

Matlab Function (contourf.m) (Figure No.21,.., 

No.26 ).  

As we see from the figure that the performance of 

seven models (namely: Spherical, Gaussian, 

Exponential, Circular, Hole Effect, Pentaspherical) 

was very good in spite of some differences. Rational 

Quadratic model produced bad result and 
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unrealisticcontoursshape. Wittle and Blinear models 

produces very unrealistic results and sometimes the 

Kriging process fails without results. Matlab gives an 

error due to the pseudo-inverse of the kriging matrix 

cannot be executed. Finally Circular, Exponential 

and Power models generated some artifacts. 

Figures (No.27,..,No. 30) represent Kriging 

Variancefor several models (namely, Spherical, 

Gaussian, Exponential, Circular, Hole Effect, 

Pentaspherical and Rational Q.). 

We notice that Gaussian, Circular and Ratinal Q. 

models have been produced small Variances.  

Finally, one thing has to be considered that the 

semivariogram is estimated from the data available 

(in our case the terrain data), it is describing the 

variability of a spatial process. So even though 

aparticular model is deemed best for a particular data 

set by a statistical comparison,it may not be the best 

choice. For example, the Gaussian model is often 

selected asbest with automatic fitting criterion, but it 

also corresponds to a process that is of 

tenunrealistically smooth. Ultimately, the final choice 

of model should reflect both the results of the 

statistical model fitting procedure and an 

interpretation consistent with the scientific 

understanding of the process being studied. 

Fig.21 Contours representation of Kriging (Spherical 

model) 

Fig.22 Contours representation ofKriging (Gaussian 

Model) 

Fig.23Contours representation of Kriging (Exponential 

Model) 
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Fig.24Kriging Contours (Circular Model) 

 

Fig.25Kriging Contours (Pentaspherical Model) 

Fig.26 Kriging Contours (Hole Effect Model) 

 

 

Fig.27  Kriging Variance -Spherical Model (left), Gauss 

Model (right) 
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Fig.28  Kriging Variance-Exponential Model (left) Circular 

model (right) 

 

Fig.29  Kriging Variance  – Hole Effect model ( left), 

Pentaspherical model (right) 

 

 

 

Fig.30  Kriging Variance - RationalQuadratic model 
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