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A Special Analytical Methodology for Variogram Modeling and
Interpolation of Terrain Elevation Data by Kriging Method

Dr. Mohaammad Al-Abdallah®

Abstract

This paper presents a special scientific analytical methodology to conduct geostatistical spatial analysis,
Variogram modeling and interpolation by Kriging method using terrain elevation data measured over
geographical spatial unit, while accounting for anisotropic behavior of terrain within this unit. The
methodology which includes the design of surface interpolation that gives weights to all data points, starts by
performing geostatistical analysis and building the Variogram chart. The Variogram models that best
representing the data is computed by using standard mathematical regression functions. The modeling
process is achieved by using iterative methods and nonlinear least squares optimization process. The
coherence between Variogram models constraint and the weights used in the kriging system ensures
statistically the best unbiased estimators as well as minimum variances for the interpolated values. Kriging
reduces the unrealistic smoothing surfaces inherited in other interpolation methods. It is also robust with
respect to very small spatial differences in data points positions, where they are included in the process. There
are a large number of semi-Variogram models that could be employed, although different models may lead to
different interpolations. The study focuses on the ten most popular models (some of them recently discovered).
The mean value of absolute variances provides valuable information help us to select which model is the best
from several candidates. If anisotropy exists in variography according to different directions, then several
Variogram models needs to be determined.

Special Matlab programs were written by the author for implementing all stages of the above
methodology. The study has shown that the interpolation process by Kriging fails in some cases and
inaccurate in other cases Thus we need easy and fast computational tools performing many experiments at
the same time giving clear representation results and final error analysis, so that the best solution is reached
at last. This was the main and most important achievement of this study.

Key Words: Variogram Analysis and Estimation, Variogram Modeling, Optimization, Geospatial Interpolation,
Ordinary Kriging, Terrain Elevation Data
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Introduction

Spatial statistics and geostatistics have developed to
describe and analyze the variation in both natural and
man-made phenomena on, above or below the land
surface. Spatial statistics includes any of the formal
techniques that study entities that have a spatial index
(Cressie 1993). Geostatistics is embraced by this
general umbrella term, but originally it was more
specifically concerned with processes that vary
continuously, i.e. have a continuous spatial index.
The term geostatistics applies essentially to a specific
set of models and techniques developed largely by
Matheron (1963) in the 1960s to evaluate recoverable
reserves for the mining industry. These ideas had
arisen previously in other fields; they have a long
history stretching back to Mercer and Hall (1911),
Youden and Mehlich (1937), Kolmogorov (1941),
Matérn (1960) and Krige (1966).

Geostatistics have since been applied in many
different fields, such as agriculture, fisheries,
hydrology, geology, meteorology, petroleum, remote
sensing, soil science, GIS and so on. In most of these
fields the data are fragmentary and often sparse,
therefore there is a need to predict from them as
precisely aspossible at places where they have
notbeen measured. This paper covers two of the
principle techniques of geostatistics that solve this
need for prediction; the Variogram Estimation and
Variogram Modeling. The first one depends on
geostatistics and spatial statistics while the second
one depends on mathematics.

A brief summary only is given here of the theory that
underpins geostatistics (formore detail see Journel
and Huijbregts, 1978; Goovaerts, 1997; Webster and
Oliver 2007). Most spatial properties vary in such a
complex way that the variation cannot be defined
deterministically. To deal with this spatial uncertainty
a different approach from the traditional deterministic
methods of spatial analysis was required that relies on
a stochastic or probabilistic approach. The basis of
modern geostatistics is to treat the variable of interest
as a random variable. This implies that at each point x
in space there is a series of values for a property,
Z(x), and the one observed, z(x), is drawn at

random according to some law, from some
probability distribution. At x, a property Z(x) is a

random variable with a mean x and variance . The
set of random variables, Z(x,),...,Z(x,) is a

random process, and the actual value of Z observed is
just one of potentially any number of realizations of
the random process. In classical statistics this set of
observed values, there alization, is the population.
The modeling and simulation of natural phenomena
are based on the assumption that the a process
{z(x),x € D} is a realization of a stochastic (or

random) functionZ(x) where Dis a fixed subset in

R¢ (a positive d-dimensional space). Matheron
(1962) called the-quantityZ(x)a regionalized

random variable, allowing the presence of
inhomogeneity in the physical process as well as
emphasizing the natural continuity of space within
the subset D. It has been established that fitting
invalid covariance model to the Variogram can yield
to a negative-definite varianceVar(Y), where Y

represents any linear combination ofZ(x). The

problem when using such models, is that it does not
guarantee a unique solution of the ordinary kriging
system and the same holds for any kind of simulation
based on kriging, thus from this perspective we say
that they are invalid. The idea is then to search for a
valid Variogram model that, as a measure of
correlation, is closest to the experimental Variogram.
(Some authors call y(h) as the Variogram instead of

Semi variogram). The space of valid variograms is a
large set of parametric family or ‘basic models’, that
are known to be positive-definite. We can also
enlarge this family by combining those functions to
form new ones that are also positive-definite and
produce what is called a nested structures or nested
models. Some preliminary assumptions have to be
made in order to make the statistical inference about
Z(x) possible, thus we start from definition of those

hypothesis that form the basis of most geostatistical
theory.
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Second-order Intrinsic Stationarity
Assumptions

Stationarity exists when the probabilistic distribution
of Z(x) is invariant and does not depend on X. let us

call m the trend (or drift), which can be expressed as
the expectation of the random variable 7 (x)

E(Z(x))=m,vxeD
F (2)=Pr(Z(x)<z),vxeD

@
(2)

In order to estimate an optimal linear predictor (using
Kriging for example), an additional assumption
isneeded. Having sufficient number of sampled pairs
2(%),2(x;), (i, j) €L...,n where(xi,xj) eD refer to
two different locations in D , and linked by a vector
hy =% —X;» let the function

Cov(Z(%), Z(x;)) =C(x —x;)=C(hy),Vx,x; €D

defines the Covariogram, or the stationary
covariance function. Any random functionz(x)

satisfying (1) and (2) and possess a stationary
covariance function, i.e. the Covariogram (3) exists,
is said to be a Second-order Stationary Process.
Furthermore, ifCov(xi—xj) is only a function of

ij_xiH:HhHonly, thenz() is called the isotropic

Covariogram. On the other hand, if the random
function 7 (x) satisfying (1) and (2) and possess a
stationary variance function, i.e. the Variogram (4)
exists, then it is said to be Intrinsically Stationary
Process. It is clear that the Second-order Stationarity
hypothesis implies the Intrinsic Stationarity, but the
converse is not true.

Variogram and Semivariogram

Observations closer together tend to be more alike
and statistically correlated than observations farther
apart. In geostatistics, this idea of autocorrelation is
quantifiedthrough a function called a semivariogram.
The quantity 2y (h) that defined by,

©)

10

Var(Z(x), Z(x;)) =2y (x, — x;) = 2y(h;), vx,x; e D

Which is a function of only the increment hy =X — X;

is called the Variogram and y(h) or Semivariogram

by Mather on (1962). The latter name is most
popular, (and will be used frequently through this
paper). Its estimation is achieved by takinghalf of the
average square difference between two samples
valuesapproximately separated by a predefined lags
h:

1
2N(h)

N(h)
DZ(Xx)-Z(x))? (5

k=1

r(h)=

Where:N(h)is the number of distinct pairs p;;
belonging to a separation vector h, and Z(%),2(x;)

are the sampled values at the beginning location and
end location respectively. Thus, we can define the
Variogram function as the variance of only the
increment vector h.

Cross Variogram
Let
Y () =[Y 04 Y ()] 200 =[2(%),,Z(x,)} ¥x e D

be two co-located spatial processes, where each is
assumed to possess a Variogram thus

2y, (% _Xj) =Var(Y (Xi)iY(Xj))
2y, (% —X%;) =Var(Z(x), Z(x;)), V%, X; €D

(6)

There are two ways to generalize the previous
notations to account for cross-dependence between
the two processesy (-)and Z(-) . The most natural one

for multivariate spatial prediction (Cokriging) is

217 (% = %;) =Cov(Y (%), Z(X;)), V¥, X; €D (7)

In similar manner to the Semivariogram, another
measure of spatial variability used by Cokriging
under special conditions called Cross Semivariogram,
due to Journel and Huijbregts (1978), and can be
estimated by taking half of the average of cross
product of all sampled pairs, having two different



Damascus University Journal For The Engineering Sciences

Vol. 34— No.1 - 2018

attributes, and associated with two different locations
separated by a predefined separation lag h,

1

Nz (D) = NG & Z[Y( D =Y PIIZ(6) -Z(x)I. - (8)
Covariogram and Correlogram

The functionCov(z(x),Z(x;)) =C(h;), vx,x; € D,
given earlier by expression (8), defines the

Covariogram. Notice that this statistics has another
name like Auto-Covariance function known in time
series analysis. The Covariogram can be estimated
using the following formulae,

c(h) N(h)Z[Z(x)Z(x)] (X -%g)  (9)
N (h)
N(h)z (x) @,m N(h)ZZ(x) (10)

On the other hand, the Correlogramis another spatial
statistics denoted by p(h) (in time series terms this is

called Auto-Correlation function). This statistics can
be estimated under the assumption thatC(h)>o0as

follows,

C(h)

p(h) = Q)

(11
Checkthat p(h) =1when C(h) = C(~h) =C(0) .

the sill of the

Semivariogram. In fact the sillC(0) defines the upper

The quantityc(0) is called

bound of the Semivariogram model fothH_wo or

practically fothHZHh whereHhOH defines the range.

o
This quantity can be decomposed into a Variogram
y(h) and CovariogramC(h). First consider the

relation

Var(Z (%), Z(x;)) =Var(Z(x,)) +Var(Z(x;))...
—=2-Cov(Z(%), Z(X;)), V%, X; € D 12) -

Recall form (3) and (4),

11

Cov(Z(x),Z(x;)) =C(x —x;) =C(hy)
Var(Z(x),Z(x;)) =2y(h;),Vx,x; €D "

In addition, under the second order stationarity
assumption we can write

Var(Z(x)) =Var(Z(x;)) = E[(Z(x) -m)*]=C(0) ~ (13)

2y(h) =2C(0) - 2C(h) =

7(h)=C(0)-C(h) (14)
Ch) _,_r(h)
p) =2 0~ co (15)

A Variogram function can be deduced from a
covariance function using the formula (14), but in
general the reverse is not true because some
Semivariogram models like the linear models or
power models have no covariance function
counterparts, as they grow without bounds. If the

assumption that the mean of the tail valuesm_, is not
the same as the mean of the head values my then the

Correlogram, is slightly defined in different way,

C(h)

RN B

C(—h)—(NZ(h:x “m?, 17)

C(+h)_i ()xz—mzh (18)
Ny &

Positive definite conditions

Letz(x) be a stationary random process with

expectation m and covarianceC(h)>0  or
Semivariogram y(h). Let Y be any finite linear

combination of z(x) as follows,

Y=34-200) (9

for any set real numbers or weights vector
W = {4 }1<i<n. This linear combination and its

variance must be positive-definite, that is
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Var(Y):ZZ/L-/Ij-C(Xi—Xj)ZO (20)

The last expression can be written in matrix form

Var(Y)=W"'-C, -W >0 (21)

Wherec, is the Covariance matrix that is defined by

a covariance functionC(h) >0 and a set of points x,,
[ ]

thus the functionC(h) is said to be positive-definite

in order to ensure the positive-definiteness of the
varianceVar(Y). On the other hand, the *

Semivariogram »(h) is said to be conditionally

negative-definite function in order to guarantee the
positive-definiteness of var(Y). If we rewrite (14) in *

matrix form corresponding to a set of points x,,

I, =G, -C, (22)

where the matrix T, represents all Semivariogram
functions »(h), C, is a matrix of the same size asT;,
whose all elements are equal to the sill C(0) of
Semivariogram. Therefore

Var(Y)=W"'.-C,-W >0= W'-T;-W <0 (23)
In the case when the sill does not exist and only the
intrinsic hypothesis is assumed, then the variance of
Y is defined on the condition that

S4=0

= Var(Y)=-W'T, W<0  (24)

Thus when handling linear combination of random
variables, then the Semivariogram can only be used
together with conditions on the weights guaranteeing
its existence.

Behavior of the phenomenon near the
origin(Nugget Effect)

The Semivariogram expectation at a very small scale,
which describes the behavior of phenomenon near the
origin, is known as the nugget effect, after Matheron
(1962). This is because it is believed that micro-scale
variation is causing a discontinuity near the origin. In
terms of Semivariogram prediction, nugget effectc,

12

is defined by y(h), ,, =¢, >0 (25)

The behavior at a very small scale is very important
as it indicates the type of discontinuity of the
phenomenon near the origin, and we can distinguish
three types of phenomena:

continuous and differentiable near the origin;
y(h)—0,] |h|—>0
discontinuous or non-differentiable near the origin,
then we have nugget effect;
y(h) >¢, >0,

[ —0
white noise process with constant variance and zero-
covariance (pure nugget);

y(h) >c, >0,/ Vh.

Statistically speaking, if the phenomenon is
continuous (or expected to be continuous) at the
micro-scale, then the only reason forc, >0 is the

measurement error. This means that if the Variogram
is modeled with different sampling schemes or using
different approaches, the value of c,would fluctuate

around its true value, thusc, =c,, +c,, » Wherec_

me '’
represents the nugget effect at the micro-scale, while
C,. represents measurements error. In practice, there

is a problem to determinec, from data whose
separationsHhHare too large to capture accurate

micro-scale information. Typically, it is determined
by extrapolation of Variogram estimates from lags
closest to zero.

Parametric Isotropic Semivariogram
Models

A review of the most frequently used isotropic
Semivariogram models are given, as well as the
general conditions that a model should satisfy in
order to be valid. Those models can be classified into
two categories:

models with a sill(or transition models) and Models
without a sill (recall from a previous section that
forthe second category a covariance function does not
exist and only a Variogram model y(h)is defined).
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To the first category goes: the Spherical model, the o

Exponential model, the Gaussian model, the Rational
quadratic model and the hole-effect model, while To
the second category goes: the Linear model, the
nugget effect model, the power model and the
Logarithmic model.

FIG.1 The square root differences cloud for elevation data

There are many parametric functions that satisfy the
properties of the semivariogram (see, e.g., Journel
and Huijbregts 1978; Chiles and Delfiner 1999). We
say that a semivariogram model is valid in d

dimensions (i.e., in R?) if it satisfies the folloing *

conditions: (let’s refer to Z(x;) by Z(s) and Z(x;) by
Z(u) for simplicity):

y(=h) =y (+h), (26)

the autocorrelation between Z(s) and Z(u) is the same
as that between Z(u) and Z(s)].
y(0)=0,, since, Var(Z(s) — Z(s)) = 0.
(/) -0,

(27)
as  |h|—> oo,

y(-ymust be conditionally negative definite, that is

m m

ZZH,(!,?(S‘: —5i) = ()

for any number
locations  {s(i),
i=1,...,m} and real numbers {a(i),....,a(m)} satisfying

of ®

Y>.a =0 this condition is analog of the positive-
i=1 [ )

definite condition for variance-covariance matrices.
Here below is given some of the ten most popular
models:

13

Linear Model

7(h,9):c0+c-(2), h>0, (28)

Spherical Model

3h 1(h
Co+Ci-|=——=| —
2a, 2\a

C, +¢C,, (h>a,)

Gaussian Model

7(h,0) =c, +c, -[1—exp(—hzz)], h>0
2 (30)

9
Exponential Model

y(h,6)=c,+c, -Ll—exp(—h)} h>0
2 (31)

e

Circular Model (32)

2h

h2
1——
T aczr J
K-Bessel (Wittle) Model

r(h.0) =c, +c, .(1_h' Bessel K(l’hJ)j,
a,, a, (33)

Sine Model (Hole Effect model)

y(h,0)=c, +¢, -(1—exp (‘f}h) -sin[ahj)J
he (34)

Pentaspherical Model

3 5
15h 5(h)| _ 3(h
y(h,a)—co+CP'[8ap_4[a,,] *3[%] J(35)

Rational Quadratic Model:

y(h,0)=c, +c, -(1—2-acos(hJ+

7 &

(h,0) =c,+c,-|h|* (2 |h| /a,) h>0

(36)
Power Model

h p
}/(h,@):CO+C(a) s p>1,h>0,(37)
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Remark:Parameters

0=(c,,c,,a,)',c,>0,c, >0,a, >0.refers to the three
parameters : Nugget effect, Sill and Range
respectively (FIG.3).Parameters{c_,c,, Cq1Cr1Cys Cyrenn}

inall models refers to the Sill. {a,,a,,a,,a,,a,,a,,..}

in all models refers to the Range. All models are valid
in RY,d >1 except Spherical, Sine and
Pentaspherical models are valid in RY,d =1.

There are many more parametric semivariogram
models not described here [see, Armstrong (1999),
Chiles and Delfiner (1999), and Olea (1999) ].In
addition, the sum of two semivariogram models that
are both valid inR%is also a valid semivariogram
model in RY, so more complex models can be
generated by adding two or more of these basic
semivariogram models (Christakos 1984)

s

Vanogram
6

Range of influence

Nugget Effect
1 1 1 A
[ 1 2 3 R 5 6

Distance Betwean Points (h)
FIG.2Typical semivariogram with Sill, Range and Nugget Effect

Semivariogram models created this way are referred
to as models of nested structures.

14

Samivariasce

abuey (Eagoeid)

Lag
FIG.3Some theoretical semivariogram models showing Sill
and Range Positions

Estimating the Semivariogram

The semivariogram can be estimated easily from
data{Z(si): i = 1,...,N} under the assumption of
intrinsic stationary so that equations (6) and (11)
hold. Using rules of expectation, we can write the
Variogram as

2y (W) = Var(Z(s + h) — Z(s)) (38)

= E[(Z(s + ) — Z(s)*] — [EE(s + b — Z(s)]?

From equation (6), [Z(s;)] = m Vs; € D, so the second
term is zero. Thus, to estimate the Variogram we
need only to estimateE[(Z(s + h) — Z(s))?] Since
expectations are just statistical averages, one way to
estimate this term is to average all observed squared
differences[Z(s;) — Z(s;)]*for pairs of observations
taken thesame distance apart in the same direction.
This is the rationale behind the method of moments
estimator of the semivariogram, given by

N(h)

> (z(s)-26, ))2

7<) = Z\N(h)\ 39)

where N(h)is the set of distinct pairs separated by h
[i.e, N(h) = {(si.5;) 's; —s;=h,i,j=1,...,n}and
I[N (h)|= the number of distinct pairs in N(h)]. Last
Equation gives what is often referred to as the
classical semivariogram estimator. It gives point
estimates of y (-) at observed values of h. If the
process is isotropic, we need only consider pairs lag
|lh]] apart. If the process is anisotropic, the
semivariogram can be estimated in different
directions by selectinga particular direction and
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averaging pairs of data lag |h|| apart in that
particulardirection. With irregularly spaced data,
there may be only one pair of locations that is h apart
(two for|lh|]). Averages based on only one or two
points are poor estimates with large uncertainties. We
can reduce this variation and increase the accuracy of
our point estimates by allowing a tolerance on the
lags. Thus, we will define tolerance regions and
group the sample pairs into these regions prior to
averaging. This is analogous to the procedure used in
making a histogram, adapted to two dimensions
(FIG.4).

Gaconag s
" AR

Lag ? .

-9 " FIG4

Tolerance regions for semivariogram estimation

Typically, one specifies tolerance regions through the
choice of five parameters: the direction of interest;
the angle tolerance, which defines a sector centered
on the direction of interest; the lag spacing, which
defines the distances at which the semivariogram is
estimated; the lag tolerance, which defines a distance
interval centeredat each lag; and the total number of
lags at which we wish to estimate the semivariogram.
Tolerance regions should include 20-30 pairs of
points each to ensure that the empirical
semivariogram at each point is well estimated
(Journel and Huijbregts 1978).

Usually, a set of directions and associated angle
tolerances are chosen together so that they completely
cover two-dimensional space (Fig.5 and 6).

15
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FIG.5 Empirical directional semivariograms and fitted models

One should construct lag in tervalsso that the total
number of lags is between 10 and 25 in order to see
the structure of the semivariogram. One should be
careful of the use of very short maximum lag
distances. The semivariogram is a picture of your
data spatially: the sill and the range, if they exist,
provide estimates of the processvariance and the zone
of influence of the observations, and information at
largerlags can indicate large-scale trends.

1000

FIG.6Empirical directional semivariogram with 2D
representation showing y(h) (z-axis), lags(x-axis) and

directions(y-axis)

Fitting Semivariogram Models

The empirical semivariogram y(-) is not guaranteed
to be conditionally nonnegative definite. This is not a
problem if we limit ourselves to inferences about
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thespatial continuity of the process, but it can lead to
problems when used for spatialprediction and
mapping where we need reliable estimates of
prediction uncertainty. Thus, we will need to find a
valid theoretical semivariogram function that close
lyre  flects the features of our empirical
semivariogram. We limit our choices to aparametric
family of theoretical variograms (like those described
in section Parametric Isotropic Semivariogram
Models in this paper)and seek to find the parameter
estimates that best fit the data.

Nonlinear Least Squares Regression Method

The idea here is to select a the oretical semivariogram
family and find a vector of parameters @ that makes
this theoreticalmodel “close enough” to the empirical
semivariogram. Let () be the empirical
semivariogram estimated at K lags, h(1), . . ., h(K)
and let y(h;0)be the theoretical semivariogram
model whose form is known up to 6. Since the
relationship betweeny(h) and h is usually nonlinear,
nonlinear least squares regression can be used
toestimate #. Nonlinear ordinary least squares (OLS)
finds & minimizing the squared distance between the
empirical and theoretical semivariograms, that is,
minimizing

"
Y [Fhiin - y(h(j): 0] .
j=1 (49)

However, the estimates y(h(j))are correlated and
have different variances, violating the general
assumptions underlying OLS theory. The usual
statistical adjustment to OLS when observations are
correlated and heterois generalizedleast squares
(GLS). Cressie (1985) applied nonlinear GLS to
semivariogram estimation, finding & minimizing the
objective function

[7-y@®1-ve)"-[7-v®] (50

V(6) the variance—covariance matrix that depends on
@is unknown and 6 is unknown, so the best estimator
is computed iteratively from starting values that are
improved at each iteration until the objective function
is minimized. Taking V(6) = Igives the OLS
estimator, and taking
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V(0) = diag{Var({(hy)}, ..., Var(F(hy)} (1)

gives a nonlinear weighted least squares (WLS)
estimator. Determining the elements of V' (6) requires
knowledge of the fourth-ordermoments of Z. Cressie
(1985) showed that a nonlinear WLS estimatorbased
on the expression:

Varly(h)] ~ 2[y(k;); 0]° /N (h)) (52)

yields an estimation procedure that often works well
in practice. Thus, weighting the OLS objective
function inversely proportional to the (approximate)
variance of the empirical semivariogram estimator
gives an estimator of & that minimizes the weighted
regression sum of squares:

N(hj)

(e

This approach is an approximation to WLS and offers
a pragmatic compromise between OLS and GLS. It
gives more weight where there is more “data”
[large(h;) ] and near the origin [smally(h;); 6], thus
improving on OLS. Although it will not be as good as
GLS, but ease of computation is a definite advantage.
It can be used even when the data are not Gaussian,
and empirical studies have shown (Zimmerman 1991)
this approach to be fairly accurate in a variety of
practical situations.

WRSS(0) = 3%, [7(hy) —v(R); 61 (53)

InverseDistance Interpolation

An inverse-distance interpolator is simply a weighted
average of neighboring values. The weight given to
each observation is a function of the distance between
that observation’s location and the grid point s, at
which interpolation is desired.Mathematically, the
general inverse-distance interpolator is written as

;
D A

N
2”,‘,, = Z Z(s;) (/“llp
i=1 i=|

(54)

Hered,; is the distance from the grid point location
s, to the ith data locations;. The weighting power, p,
is selected to control how fast the weights tend to
zero as the distance from the grid node increases,
based on assumed increasing similarity between
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observations taken closer together. As the power
increases, the contribution (to the interpolated value)
from data points far from the grid nodedecreases.
Distance powers between 1 and 3 are typically
chosen, and taking p = 2gives the popular inverse-
distance-squared interpolator. [Burrough (1986)].

Interpolation by Kriging

Kriging is a geostatistical technique for optimal
spatial prediction. We emphasize the distinction
between prediction, which is inference on random
quantities, and estimation, which is inference on fixed
but unknown parameters. Georges Mather on, the
founding father of geostatistics, introduced this term
in one of his early works developing geostatistical
theory (Matheron 1963).There are many different
types of kriging, differing by under lying assumptions
and analytical goals. One can consult some references
to learn more about Kriging methods, (e.g., Journel
and Huijbregts 1978; Isaaks and Srivastava 1989;
Cressie 1993; Wackernagel 1995; Chiles and Delfiner
1999; Olea 1999; Stein 1999).The basic and most
popular method is Ordinary Kriging which will be
briefly discussed here.

Ordinary Kriging (OK):Assume that Zz()is
intrinsically stationary process [i.e., having unknown
mean, W, and known semivariogram, y(h), where
{Z(si):i = 1,...,N}represent the data and we want to
predict the value of the Z(-)process at an unobserved
location,Z(sy), so € D. As with the inverse distance
methods described in previous section, the ordinary
kriging (OK) predictor is a weightedaverage,

v N

Z-'f_ml"S(JJ = X}.;Z(vs, ). Z}u =1.
1=l i=I (55)
However, instead of specifying an arbitrary function
of distance, we determine the weights based on the
data using the semivariogram and two statistical
optimality criteria: unbiasedness and minimum mean-
squared prediction error. For unbiasedness, the
predicted value should, on average, coincide with the
value of the unknown random variable, Z(s,) In
statistical terms. Unbiasedness constraint
requiresE [ 2, (so)] = E[Z(so)] =, which means
thaty , 2; = 1. To ensure the second optimality

17

criterion, we need to minimize mean-squared
prediction error (MSPE), defined asE[Zok(so) -
Z (so)]z, subject to the unbiasedness constraint. One
method for solving constrained optimization
problems is the method of Lagrange multipliers. With
this method, we need to find4, , ..., Ayand a Lagrange
multiplier, m, that minimize the objective

(R R

Function. The second term is essentially a penalty,
minimized when}~_, 4; = 1, thus ensuring that our
overall minimization constraint. Now this implies that

| (56)

[Z\:)»./m» Z(n.l] = éiik,&.[/ls,l le,l]"
i=l =il j=I (57)

N
1 >‘}., [Z(sy) — Z(s))]
1

aives

N

; [(L/ /) i)

N
VY aoE [(zu,| - zis)*]

(=1

e 3 0k [Ze0 z“,n']
i ] -

Thus the equation (56) becomes

" N ,
$/)+4 '?X)“)'U“ 5:) :"’(Z:)\‘ l)

24588,

Y3 hikjris

] fuel e | \ =]
(59)
To minimize (59), we differentiate with respect to
A1, ., Ay @nd m in turn and set the partial derivatives
equal to zero. This gives a system of equations,
referred to as the ordinary kriging equations,

N

Z}.,yls, —8))+m = y(sp—5i).

N))

i=1,..

We solve these equations for 4, ..., Ay(and m), and
use the resulting optimal weights in equation (55) to
give the ordinary kriging predictor. Note that
7 (s,) has weights that depend on both the spatial
correlations between, Z(s,) and each data point
Z(sp):i = 1,...,N, and the spatial correlations
between all pairs of data points Z(s;)and Z(s)):i =
1,...,N and Z(s;):j = 1,...,N . usually we write the
Kriging System of Equations(60) in matrix form as
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!
YISy

y(sp —

sy) |
yis; —sy) |

yisy - 5;)
yis: —51)

yis,

YALTH]
0 |
(61)

Note that we must calculate A,for each prediction
location s,. However, only the right-hand side of
equation (61) changes with the prediction locations
through y,. Since the coefficient matrix depends only
on the data locations and not on the prediction
locations, we need only invert this w matrixonce and
then multiply by y,vector to obtain a prediction for
any s, € D. The minimized MSPE, also known as the
kriging variance, which is a measure of the
uncertainty in the prediction ofZ(s,), is obtained as
follow

2
a7 (s0) =AY

N
= E Aivisg —s;)+m
=1
N N
B Tt P
LL/.,/.,)’H. -5k

Implementation in Matlab(3 stages):
(1)Vvariogram Estimation,
(2)Semivariogram Modeling,

(3) Kriging Interpolation.

Dataset that has been used for testing programs

performance (which cover area of 1000x1000m)is

given in the form of 3-column matrix (x,y,z) . Itis a

terrain elevation data consist of 266 points distributed

as shown in (Fig.8).

data (coloring acoording to a-value)

X oordinaing
Fig.8 Dataset Locations and their distribution (color
indicate the z-value)

L 3
$2

A

Data in the study has been downloaded from internet
which was related to a small forested area in
Wisconsin, USA, provided by Department of Forest
Resources, University of Minnesota.

By constructing histogram of the dataset values (z
values) (Fig.9), we see that some z-values have very
large frequencies (like z=630 and z=650) and this
means that lower areas is represented by large
number of points.

histogram of zvalues

Fig.9 Data histogram shows the frequency of Z-Values

o EstiamteVariogram.m is a Matlab functions were
written by the author for computation and
visualization the variogram. It calculates the
experimental variogram for concrete number of lags-
distances and directions (anisotropic variogram).

Program Input:
X - array with coordinates. Each row is a location in a
size(x,2)-dimensional space (e.g. [x y elevation]). vy
- column vector with values of the locations in x.

nrbins - number bins the distance should be grouped
into(default = 20).

maxdist - maximum distance for variogram calculation
(default = maximum distance in the dataset / 2).

type - ‘'gamma’ returns the variogram value (default)
‘cloudl’ returns the binned variogram cloud , ‘cloud2’
returns the variogram cloud .

plotit - true -> plot variogram - false -> don't plot
(default). subsample - number of randomly drawn
points if large datasets are used. scalar (positive
integer, e.g. 3000) inf (default) = no subsampling

anisotropy - false (default), true (only in 2D)

18
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thetastep - if anisotropy is set to true, specifying
thetastep allows you to change the angle width
(default 30 degrees)

Program Output:
d - structure array with distance and gamma — vector

plot gamma results as shown below (Fig.10).
The Program (EstiamteVariogram.m ) which is
Matlab function, computes also the Variogram in all
possible directions defined by separation distances is
called lag (number of lag distances = 22).

motropic Semivarogram

- -

Fig.10 the Isotropic Variogram of our data

One can visualize Variogram anisotropy, which is
computed and stored in matrix form. This feature is
very useful to detect certain directions where
variogram shows distinct characteristics.
Thequadratic ‘lowess’ interpolanthas been used to
create a smooth surface representation. Interpolation
here gives better understanding of anisotropic
variogram than plotting the original one. As we see
below the behavior of the data for each direction is
different (directions are given in degrees). (Fig.11).
The programs VarFitModelm is written by the author
and used for Semivariogram Modeling and
visualization of results using the dataset (shown in
Fig.8) as 2D irregularly spaced data. VarFitModel.m
a Matlab function that performs a least squares fit of
various theoretical variograms to an experimental,
isotropic variogram. The user can choose between
various bounded (e.g. spherical) and unbounded (e.g.
exponential and power) models.

A nugget variance can be modeled as well, but higher
nested models are not supported. VarFitModel uses
Matlab fminsearch function, but it should be used
carefully, because the problem is, that it might return
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negative variances or ranges. The variogram fitting
algorithm is in particular sensitive to initial values
below the optimal solution. Hence, visually
inspecting the data and estimating a theoretical
variogram by hand should always be your first
choice. Note that for unbounded models, the supplied
parameter a0 (range) is the distance where gamma
equals 95% of the sill variance. The returned
parameter a0, however, is the parameter r in the
model. The range at 95% of the sill variance is then
approximately 3*r.

ropic_Gamma vs. Lag_Distances, Directions.

Variogram Anisotrapic Gamma Values

Lag Distances in meters

Fig.11 Anisotropic Variogram (y values vs. lag Distances
and Directions in degrees). As we see that Variability
behavior in the East-West Direction is completely different
from that behavior in North-South Direction

Ten most popular Fitting models types that have been
analyzed and fitted to the empirical VVariogramData.
Theyare:Spherical,Gaussian, Exponential,Circular,
Hole Effect (Wave), Pentaspherical, Rational
Quadratic,, Power,K-Bessel (Wittle) and.BLinear
model gives strange output for Kriging so it is
avoided. Below 10 Models (Figures 12,...,20) have
been fitted with the empirical variogram data using
program EstiamteVariogram.m . Table.1 shows the
summary of semivariogram results.
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Table.1 Summary of the Semivariogram Analysis Results

Model sitt | Ramge | RMS | Type |
Spheical 9614 | 3682 64.37 Bounded o O
Gmssian 9637 ‘ 3065 70.61 Unbaunded
Exponential 9986 | 3073 10358 | Unbounded
Circular 954 8 [ 368 60,37 | Bownded
Hole Effect 9653 | 180 71.53 Unbounded
Pentaspherical 9691 | 4214 7032 Bounded
c’;‘::;’:l s | sme 8539 | Unbounded | i i 1 )
P 1590 | 3761 135.19 Unbounded . L
Rl - e e Fig.14 Fitting Exponential Model
Witle 9756 | 4800 $1A7 | Unbounded
1 1
Blmear 9503 [ 2682 56.26 Hounded
..... crenaria g pee & ¥ PG (0 M
Model parameters (shownon each of the figures)are: / -
model Name, model Type, Sill, Range, RMS which
reflects the goodness of fit, and model function. E
Brrren g ers B S Bateerir o Wotel oo

o e o s - -

Fig.15 Fitting Circular Model

FIG.12 Fitting Spherical Model || i

Berincastemeare & ¥ inie Riebie Gmisninr Mrssnt

g
Fig.16Fitting Hole Effect (wave) Model
Fig.13 Fitting Gaussian Model rr /.-/'”-
? -
2

- . -~ o e
Loy tmbe

Fig.17 Fitting Pentaspherical Model
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/

Fig.18 Fitting Rational Quadratic Model

Berrtrarieurone & 9 ecee Fem Moo

Fig.19 Fitting Power Model

Fig.20 Fitting Whittle Model

Implementing Kriging Interpolation

Krig Interpolate.mis a Matlab function written by the
author, which uses ordinary kriging to interpolate a
variable Z measured at a locations (x, y) at unsampled
locations (xi, yi).The function requires the variable
vstruct that contains allnecessary information on the
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variogram. vstruct is the main output argument of the
previous function VarFitModel.m. The function
always includes all observations to estimate values at
unsampled locations. This may not be necessary
when sample locations are not within the
autocorrelation range but would require something
like a k nearest neighbor search algorithm. Thus, the
algorithms works best for relatively small numbers of
observations (100-500).Note that kriging fails if there
are two or more observations at the same location.

Input arguments:
vstruct  structure array with variogram information
as returned fromVarFitModel.mfunction.

X,y  coordinates of observations
z values of observations
xi,yi  coordinates of locations for predictions

chunksize number of elements in zi that are
processed at one time. The default is 100, but this
depends largely on the available main memory and
numel(x).

Output arguments:
zi kriging predictions, zivar kriging variance

Summary of Resultsand Conclusions

Table.1 shows the summary of semivariogram results.
From the table we see that the average Sill is 988, the
minimum is 950.3 (Blinear model) and the maximum
is 998.6(Power model is excluded). The average
Rangeis 381.7 the minimum is 268.2 (Blinear model)
and the maximum is 528.0 (Rational Quadratic
model). The average RMSis 79.9 (which indicates
goodness of fit) fluctuates between 56.3 and 135.2,
thus Exponential and Power models are not among
the best fitting models.

The Final digital terrain model (DTM)is generated (as
contour lines) by above programmed Kriging
Function (krigInterpolate.m) and is visualized by a
Matlab Function (contourf.m) (Figure No.21,..,
No0.26 ).

As we see from the figure that the performance of
seven models (namely: Spherical, Gaussian,
Exponential, Circular, Hole Effect, Pentaspherical)
was very good in spite of some differences. Rational
Quadratic model produced bad result and
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unrealisticcontoursshape. Wittle and Blinear models
produces very unrealistic results and sometimes the
Kriging process fails without results. Matlab gives an
error due to the pseudo-inverse of the kriging matrix
cannot be executed. Finally Circular, Exponential
and Power models generated some artifacts.

Figures (No.27,.,No. 30) represent Kriging
Variancefor several models (namely, Spherical,
Gaussian, Exponential, Circular, Hole Effect,
Pentaspherical and Rational Q.).

We notice that Gaussian, Circular and Ratinal Q.
models have been produced small Variances.

Finally, one thing has to be considered that the
semivariogram is estimated from the data available
(in our case the terrain data), it is describing the
variability of a spatial process. So even though
aparticular model is deemed best for a particular data
set by a statistical comparison,it may not be the best
choice. For example, the Gaussian model is often
selected ashest with automatic fitting criterion, but it
also corresponds to a process that is of
tenunrealistically smooth. Ultimately, the final choice
of model should reflect both the results of the
statistical model fitting procedure and an
interpretation  consistent  with  the  scientific
understanding of the process being studied.

" rxn ) i o o o e 00N

Fig.21 Contours représentation of Kriging (Spherical
model)
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Fig.22 Contours representation ofKriging (Gaussian
Model)
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Fig.23Contours representation of Kriging (Exponential
Model)
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Fig.24Kriging Contours (Circular Model)
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Fig.25Kriging Contours (Pentaspherical Model)
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Fig.26 Kriging Contours (Hole Effect Model)

Fig.27 Kriging Variance -Spherical Model (left), Gauss
Model (right)
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Fig.28 Kriging Variance-Exponential Model (left) Circular
model (right)
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Fig.29 Kriging Variance — Hole Effect model ( left),
Pentaspherical model (right)

Fig.30 Kriging Variance - RationalQuadratic model
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