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Using Cholesky Decomposition and Sparse Matrices for
Conditional Simulation of a Gaussian 2D Random Field

Dr. Mohammad Al-Abdallh®

Abstract

This study presents an efficient practical method for the generation of sequential conditional
simulation of a Gaussian two-dimensional random field which we frequently encounter in GIS spatial
analysis problems such as DEM’s generation from a limited number of data. The many realizations
typically correspond to many reasons such as the geospatial uncertainty, the morphological perturbations
over the surface having a complex structure or the inadequate representation of the triangulated network
TIN or grid. These realizations with simulation-based concept enable the performance and uncertainty
assessment that tunes to various geospatial (GIS) applications. For DEM generation and implementation
of the conditional simulation, we need to decompose the covariance matrix of the data points and grid
nodes by Cholesky Decomposition. Conditional simulation respect data values and transfers those values
into the grid nodes. With the Incomplete Cholesky decomposition of the covariance matrix, we can
produces as many simulations as needed in a single step with an accuracy, in a global sense, much better
than the Moving Window Kriging method. In other words, we don’t need to repeat covariance matrix
generation and decomposition many times. On the other hand, there is the problem of producing
covariance matrices in the case of large dataset, which proved to be time consuming and may take several
hours on PC. The present paper presents a solution to this problem using Sparse Matrices Technique and
Cholesky decomposition to achieve conditional simulation, reducing the time required for computations
dramatically, as well as decreasing the demand of large amount of computer memory. For the purpose of
this study and testing all algorithms, a MATLAB Programs were made by the author. They have been
used in all computation stages and applied using real data. The study has shown that we can reduce
computation time by 85%-95% according to the scale of the problem yet saving a considerable space in
memory needed to store matrices.

Key Words: Sparse Matrices, Incomplete Cholesky Decomposition, Geostatistical Simulation,
Gaussian Random Fields, Spatial Data Analysis in GIS, DEM.
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Introduction

Recent advances in  geographical
information systems and global positioning
systems enable accurate geocoding of
locations where scientific data are collected.
This has encouraged the formation of
considerable amount of data sets in many
fields and has generated considerable
interest in statistical modeling for location-
referenced spatial data [Chiles J., Delfiner P.
(1999) Moller (2003), Banerjee et al. (2004)
and Schabenberger and Gotway (2004)] for
a variety of methods and applications.
Geostatistics is a subset of statistical method
specialized in analysis, interpretation of
geographically referenced data (Goovaerts,
P. 1997). Cressie (1993) considers
geostatistics to be only one of the three
scientific fields specialized in the analysis of
spatial data. In the most pragmatic terms,
geostatistics is an analytical tool for
statistical analysis of sampled field data
(Bolstad, 2007). Today, geostatistics is not
only used to analyze point data, but also
increasingly in combination with various
GIS data sources: e.g. to explore spatial
variation in remotely sensed data, to
quantify noise in images and for their
enhancement and filtering (e.g. filling of the
missing  pixels), to improve Digital
Elevation Models (DEM), generation or
simulation ~DEM’s, optimize spatial
sampling (Brus and Heuvelink, 2007),
selection of best spatial resolution for image
data and selection of support size for ground
data (Atkinson and Quattrochi, et al 2000).
Many application fields use geostatistics for
spatial data analysis and interpretation like:
(1) geosciences, (2) water resources, (3)
environmental sciences, (4) agriculture
and/or soil sciences, (5) mathematics, (6)
statistics, (7) ecology, (8) civil engineering,
(9) petroleum engineering and (10)
meteorology.

Full inference and accurate assessment of
uncertainty often require Markov chain
Monte Carlo (MCMC) methods [David P.
Landau, Kurt Binder (2009), Banerjee et al.,
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(2008)]. However, such fitting involves
matrix decompositions whose complexity
increases as O(n®) (n is the number of
locations) at every iteration of the MCMC
algorithm; hence the infeasibility or ‘big n’
problem for large data sets. Evidently, the
problem is further aggravated when we have
a vector of random effects at each location.
Spatial process models for analyzing
geostatistical data entails computations that
become prohibitive as the number of spatial
locations become large. In addition
geostatistical modeling usually involves
many variables and many locations.

The suggested LU simulation method for
generating realizations (or DEM
simulations), involves producing covariance
matrices that are too large and not
necessarily amenable to direct
decomposition, inversion or manipulation.
This  paper presents an  efficient
Implementation method that uses LU
decomposition or Cholesky Method for
symmetric matrices, as well as Sparse
Matrix ~ Techniques  for  generating
conditional realizations using randomized
methods. Sparse Matrix Technique can
overcome the problem of covariance
matrices of huge sizes. This technique
reduces the time required for large-scale
systems  computations including  the
Eigenvalue problem as well as the demand
of large amount of memory. The LU method
has some other advantages over other
methods, such as the Turning Bands (TB) or
FFT, in that the simulation and conditioning
are implemented simultaneously [G3.

.Oneiting Tilmann et al. (2005)]. In
addition LU algorithm is considered much
more simple, fast and easy to implement
[Dietrich, C. R. (1993)]. LU decomposition
Method due to its author Davis (1986),
assumes that all grid nodes will be simulated
at the same time and that all available data
will be used. Using Sparse Matrix
Techniques with an approximate incomplete
decomposition method in the simulation of
larger grid schemes, or large covariance
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matrices, is the only way out to overcome
the computational machine errors [Dietrich,
C. R. and Newsam, G. N. (1997).]. In
general, the covariance matrix of order 1000
or more is considered as sparse [Cressie, N.
and Huang, H.-C. (1999)] The purpose of
this paper is to implement Conditional

Simulation by LU decomposition (or
Cholesky  decomposition  method) in
combination  with ~ Sparse =~ Matrices

Technique to generates realization of N
random variables at n spatial locations
usually from a grid structure, using Monte
Carlo Method (MCMC) and preserving the
data values at original locations within the
predefined spatial structure. On the other
hand, Sequential Simulation algorithms are
considered the most frequently used
techniques, having several advantages over
other methods, including the automatic
handling of anisotropy as well as data
conditioning. Their theoretical basis is
simple and it can be applied to many
simulations problems with single variable as
well as with multiple variables, -either
continuous or categorical.

Conditional Simulation Concept

The building blocks of a conditional
simulation are the mean function u(-), the
covariance function C(-) and the most
important data vector z;. It is required that
the conditionally simulated process Z,.(x)
pass through the data z;, having
unconditional mean u(-) and variance C(-).
One might think that the kriging predicator
Za(x) would satisfy the requirements,
because it does interpolate the data exactly
and it is unbiased. However as kriging has a
smoothing tendency, it does not possess
enough variability in order to give a
posterior probability distribution about the
uncertainty.

The purpose of Conditional Simulation is
to produce Random Fields that simulate the
spatial variability of the underlying random
process Z(x) [Cressie, N.; Wikle, C.K.
(2011)], [lsaak, E.H. & Srivastava RM.
(1989)]. Theoretically, with Conditional
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Simulation we are able to generate an
infinite number of possible realizations of a
Random Field {Z;(x),xeD,s =1 - o }.
From among the infinite simulations we
choose those that meet certain condition

Zi(xy) = Zoy(x4),Vx, € D.For example
if we want the simulated model honors data
values at the actual data locations, we set:

Zes(xg) = Zo(x,), Vx4 € D, Wherex,
represents data locations.

This is known as Conditional Simulation,
which  has the same  variability
characteristics as the real observed
phenomenon. This means that the simulated
values Z.;(x,) have the same first two
experimentally found moments (namely the
mean and the variance or Variogram) as the
real values Z,(x,). On the other hand, if not
then the simulated values Z.(x,) are not
the best possible estimators of the random
process Z(x). Journel and Huijbregts (1978)
showed that the posterior estimation
variance of Conditional Simulation is as
twice as that of Kriging, thus one should
emphasize that the objective of simulation is
not to obtain the best unbiased estimator
provided by Kriging. Conditional Simulation
is useful to get some idea of the amount of
variability remaining in the physical model
or processZ (x) conditioning with respect to
the observations [Journel, A.G (1989)]. Thus
predictions and simulations address two
different problems.

Now consider the decomposition of the
process into a kriging predicator and
unconditional residual [Journel, A.G. &
Huijbregts, C. (1978) ].

Zes(x) =Z7(x0) + [Zys () = Z3s ()] (D)

Where Z.,(x) is the conditional
simulation, Z*(x) is the kriging estimators
using the real data set (representing the
estimated grid), Z,;(x) is the unconditional
simulation, and Zg.(x) is simple-kriging
estimators using the unconditional simulated
data. The two components of the right-hand
side of Z*(x) and Z,.(x)—Z;s(x) are
orthogonal. This orthogonality implies that
Z.s(x) has the same unconditional
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covariance as (x) , namelyC (). The quantity
Z,s(x) — Z;:s(x) can be obtained by kriging
the difference between data values and the
unconditionally simulated ones at data
locations. Thus the above expression can
rewritten as follows [Davis (1987) and
Cressie (1993)]

Z (1) =Z,, () +c00)-Y. (2, -2,) (2)
Where Z..(x) and Z,,(x) has the same
meaning given above,

c(x) = C(xd,xg),‘v’xd € D,Vx, € G : is the
covariance vector between data nodes and
grid nodes.

ZEVar(z): is the variance-covariance

matrix between the data and itself.
zq and z; are two vectors representing
actual data and the simulated ones at the data
node locations.

Conditional Sequential Simulation

The principle of Conditional Sequential
Simulation is once the new value simulated,
it is added to the original set of conditioning
data, and the procedure repeated [Gomez-
Hernandez, J.J , Cassiraga E.F. (1994)].
Finally all simulated nodes (by construction)
will have the same initial spatial structure
provided that all node values at data
locations preserved. The principle of
Sequential Simulations can be described as
follows [Christakos, G. (2005)]: Consider

the cpdf =f(z,,2,....2,|2,), Where z,
denotes the conditioning data atn, locations.

This probability function can be defined as
f(2y02,|20) = (2] 20) - T (2,]7,025)...

' f(zn|[zl""zn—1]uzo) (3)

Thus the generation of a realization by
Sequential Simulation takes the following
steps [Christakos, G. (2005)]:

Q) Draw a value z, from the

conditional probability distribution f, given
the set z, as conditioning data.

21

(2) Draw a value z, from the conditional
probability distribution f, given z, Uz, as
conditioning data. ... ...

(n) Draw the last value z, from the

conditional probability distribution f_ given
the setz, U[z,...,z,_, Jas conditioning data.

Remark 2: the Sequential Simulation is
conditional by construction, thus eliminating
the extensive conditioning steps required by
other traditional methods such as the
Turning Bands Method.

Remark 3: There is no restriction on the
spatial locations of the random variables
yielding an algorithm that can be equally
applied to generate one or more variables on
either a regular or irregular grid.

However, it remains the problem of
determining the cumulative portability
distribution function (cpdf) of any single
random variable given any set of
conditioning data. This problem has been
solved for the Gaussian distribution, where
the data first are transformed to the standard
Gaussian values. Simple or Ordinary kriging
is used to obtain estimates of the necessary
conditional distribution defined by the only
the two Gaussian parameters; namely its
mean and variance. The simulations are then
drawn randomly from this distribution using
inverse transform method. Finally, the
results of the Gaussian simulation are
transformed back into the original data

space.
The Gaussian Function
Gaussian  Function is unique in

geostatistics for its analytical simplicity and
for being the limit distribution of many
analytical theorems globally known as
‘Central Limit Theorem’. If the continuous
phenomenon {Z(x),x € D} is generated by
the sum of a number of independent sources
{y, (x),xe D,k =1,..., K}with similar spatial
distributions then the phenomenon can be
modeled by a Multi-Gaussian RF model.
Multi-Gaussian  models are extremely
congenial, well understood, and they have
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large record of successful applications [John
Dolloff and Peter Doucette (2014)]. A
random function is said to be Gaussian or
Multi-Gaussian if any linear combination of
its variables follows the Gaussian
distribution,

K
Z(x) = > 4Y,(x) ~ gaussian — function (4)

k=1

In geostatistics, conditional simulation is
used to estimate, by Monte Carlo Methods,
complicated nonlinear functions that depend
explicitly on  multivariate  stochastic
distributions. When the simulation domain is
discrete, a sequential procedure can be
considered [Journel, A.G (1989)]. This
consists of prescribing an arbitrary ordering
of all of the points of the domain, and
simulating each point in turn according to a
Conditional Gaussian distribution given the
generated values of all the previous points.
In the case where the simulation domain is
continuous, a ‘parallel’ procedure is
necessary such as the Turning Bands
Method, or LU Decomposition (Cholesky)
Method.

LU Decomposition (or Cholesky Method)
The suggested method considers one

covariance matrix C of all data and grid

locations to be generated and partitioned as

follows:
(212}
(:22

(: ::{(:ll
(:21

Where C,,is the variance-covariance
matrix between data points. C,, =C;, is the
covariance matrix between data points and
grid points and C,, is the variance
covariance matrix of grid points. If matrices
C,, and C,, are symmetric and positive-
definite then matrix C is also symmetric and
positive definite and can be decomposed by

Cholesky algorithm into lower part and
upper part as follows,

(5)

22

::11 LO :||:U(;.l 312:| (6)
21 22 22

Let the vector W =W, W, ] be a vector
of independent Gaussian Random numbers
N(0,1), where the length of W, is equal to
the number of data points and W, is equal to
the number of grid nodes.

Also, let the vector z, =z, z,] be an

unconditional simulation of the random
function Z(x),vxeD at data points and

grid nodes with the covariance matrixC .
Now if we sety =L -W , we will find that
E(y-y)=E(LWW'U)=L-E(WW")-U =
L-1.U=LU=C (7)

E(WW"') =1 is the identity matrix , because

W is a vector of independent random
numbers N(0,1) . From (7) we see that the

vector y=L-W is an unconditional
simulation of the random function Z(x) that

C:L-U:{

leads to the conclusionz, =[z, z,] =Y.
Now we can write
Zus:y%{zﬂz{ L11'W1 } (8)
Z, L21 'W1 + Lzz 'Wz

As we seek a conditional simulation of
grid nodes, we can setz, =z,,.., where z,,.
is the vector of actual data values and set
Z, = Zy04es» Where z, .. =2 is the vector of
conditional simulation (at nodes) which
correspond to the random vector W,only.
On the other hand the vector W, is no more a

random vector and should be replaced by the
solution of the upper part of the system (8)

W1 = LH 4= Lﬁ " Lgaa %)

Now replacing W, in the system (8) yields

the sought conditional simulation,

Znodes = L21 : Lﬁ : Zdata + I-22 'WZ (10)
Remark 1: if a grid node happens to

coincide (or co-located) with any data point,

then the point should be considered as data

and must be unique (no duplication of data is
accepted at any location).

nodes
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Remark 2: the data vector z,=z,,.in

expression (9) have to be transposed (or
normalized) so that the random function

Z,(x)is Gaussian Random  Function
Z,(x)eN(02).

Remark 3: all covariance matricescll,

Cizand C22should use the same covariance
function so that Variogram parameters are

normalized i.e. © *P=1 Note that
E(Zd Zrtj ) = C117 E(Zg Z;) = C22,
E(z, Z;):Clz =C§1 11)

Remark 4: multiple simulations may be
generated easily and as many as desired

(because the vector W,

thus the matrix b22"We can be computed in
a single step. The number of this matrix
rows will be equal to the number of
simulated nodes and number of columns will
be equal to the number of simulations. Again
Wl

IS a random vector),

we do not need to generate because it

-1
already replaced by L2
Cholesky Decomposition with  Sparse
Matrix Technique (the algorithm)
One can write Cholesky decomposition in
the partition form (6) in different way. If we
0

put
|:Cll C:12:| |:L11 :|'|:Ull U12:|_>
C21 C22 LZl L22 O U22
|:C11 C12:| |:L11U11 L11U12
C21 C22 L21U11 L21U12 + L22U 22

Then:
e Compute all covariance matrices {C,,,
C,,, C,,} and store in sparse format.

e Compute the Cholesky decomposition of
the square matrix C,;, and obtain the sparse

lower  triangular  matrix L, as

Cn=LU;= L11Lt11 13).

} (12)

23

e Find the inverse of L, and store it in L,

. Note that we don’t need to store U,, or U,
e Compute L,, using the formula:

Li=CL-(L) 4
Recalling from (12) :
CZl = L21 'U11 =

= -1 1\t

L21:C1t2'U111:C1t2'(Lt11) :C1t2'(|—11)
e Compute L,,: to find L,,we must find
(L,,-U,,) first. from (12) we have:
* L,,-U,=C,—-L,-U,=LU, 15)

Then perform Incomplete Cholesky
Decomposition of LU,,, which is also a
sparse matrix and thus the output will be a
sparse triangular matrix L,,.

Figures (2) through (9) show the sparse
structure of the matrices used by the LU
decomposition method. We can easily
recognize the sparsity of each matrix
visually. The sparsity of each matrix is
computed by dividing the number of non-
zero, which is fixed below each figure (nz~),
by the total number of elements of the
matrix.

Figure (4) through (9) below show the
sparse structure of the matrices for larger
problem, where the range of influence (the
Variogram reaches the sill) having the value
equal to the third of the maximum distance
in the grid system. The figures show that the
sparsity becomes much clear. The non-zero
elements related to the total number of
elements especially for the initial matrices
are less than 5%. Although each element
needs 8 MB for storage, there is much
saving in the processing time as well as in
storage capacity required for completing the
simulation than that with known traditional
method.
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Implementation the Algorithm

e Dataset that has been used for testing
programs performance (which cover
geographic area of 1000m x1000m) is
given in the form of 3-column matrix (X,
y, z) . It is a terrain elevation data consist
of 266 points distributed as shown in
(Fig.1).

e Data in the study has been downloaded
from internet which was related to a small
forested area in Wisconsin, USA,
provided by Department of Forest
Resources, University of Minnesota.

data (coloring according to z-value)

2000 3
1900 T I
- - d
a6 . . e n. -
1800 .o % i,
. s

1700 | ¥ o : T Mg M o Bow 720

700

Y - coordinates
& 8 8
o o o

1300 ° %
660

1200 | .

- L "
1100 ° ° Z . . | 640
. s

1000 —* e
1000 1200 1400 1600 1800 2000

X - coordinates

Fig.1 Dataset Locations and their distribution

The  Conditional simulation by
Incomplete Cholesky decomposition using
sparse  matrix  techniqgue has been
implemented using the special Matlab
Program. The data is an Ascii file and
Matlab can read it in two ways: either by
giving the name of the ‘file’ or matrix which
must consist of three columns: the first two
columns contain the geographic Xy
coordinates and the third contains the
corresponding z values. The other way of
entering data into the program is to give the
names of 3 vectors, representing the
geographic coordinates and data values,
separately. The program computes the mean
value and the variance in order to convert
the data into a standard Gaussian (Davis
1987b). The second step is to define the grid
system that has to be simulated. The
parameters for the simulated nodes are
entered in two way either interactively or
written directly in the program. Variogram

parameters, Anisotropy, nugget effect,
number of simulations as well as seed
number all can be entered in the same ways
mentioned above. The program structure is
similar to the program ‘lusim’ provided by
the GSLIB [Deutsch C.V. & Journel AG.
(1992) ], although here the study uses sparse
matrix technique with the Incomplete
Cholesky  Decomposition.  All  those
functions are Matlab built-in functions, thus
they do computational tasks, much faster
than other functions that have no similar
Matlab functions. Those functions use the
traditional GSLIB methodology and their
execution is very slow, therefor they slow
the performance of the program. For
example, the construction of covariance
matrices uses the traditional method and
takes more than 90% of the overall
execution time. 24 Simulations were
generated and some results of the Cholesky
decomposition Process are shown in figures
No 2 through figure No 9 for small scale
problems as well as for large scale Problems.
Final 16 Simulation results represented by
Contour images are shown in figures No.10
through figure. No.25.

Conclusions

In this paper, sparse matrices technique
with Cholesky decomposition has been
tested and proved as an efficient method for
decomposing large covariance matrix by
Cholesky method and generating simulation
realizations. This method is based on the
randomized sampling of covariance matrix
for finding a sparse matrix which has much
smaller size than the original one and
captures most of the action of that matrix.
This method works very well for
approximation of DEM’s which generates as
many simulations as needed very fast.

When the field correlation is defined
using Gaussian Covariance Function and
taking into account the sparsity of the
system and this means that only pair of
nodes that fall within the zone of influence
(the range) have a significant correlation, the
rest of pairs, usually located beyond the
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search radius, having negligible correlations
and introducing many zero elements in the
covariance matrix. This study shows that,
using this method, very large covariance
matrices can be decomposed, but only
limitation of this method is related to storing
a large sparse matrices in computer memory

like matrices Luand L2z,

The study provided computationally
efficient methods for fitting DEM model to a
relatively small data set by generating spatial
simulations conditioning on the data itself.
Once the new value simulated, it is added to
the original set of conditioning data, and the
procedure repeated. Once  enough
simulationsare computed, a ‘best’ DEM
model is then fit very quickly. The
conditional simulation results give the most
likely wvalues or expected values at
unobserved locations. As we see from the
figures below that the simulated data reflect
some of the uncertainties that are expected
from any kind of simulation whether it is
conditional or unconditional.

"'.,'|I||"ll| " lll..'l...'

] 10 20 30 0 50

SPARSE MATRIX C12 SPARSE MATRIX C22

w0
nze1372

Figure 2. Computational Steps of the of the
Variance Covariance Matrix (small scale dataset)

SPAREE MATAIX L1 THE INVERSE MATRIX OF L1

Figure 3.Computation Steps - Incomplete Cholesky
Decomposition with Sparse Matrices (Small Scale
Problem)

Figures (4) through (9) show:
Computational Steps— Variance-Covariance
Matrix and Incomplete Cholesky
Decomposition with Sparse Matrices (for
Large Scale Problem)

SPARSE MATRIX C11

50 -\\-
N
100 \‘t\:‘\
150 A
\\
200 N
R
250 \\i\\\\b\q\
300 .\
350 ‘\\\:\\
400 R
450 \}\\\-‘}
500 Y

0 100 200 300 400 500
nz = 3202

Figure 4 Sparse Covariance Matrix C11

---------------

Figure 5 Sparse Covariance Matrix C22
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In fact we can do unlimited number of
simulations and each of them will be unique.

Simulation No.1

2000

1900

nee 17348

Figure 6 Sparse Lower Triangular Matrix L11

00 —
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Longitudes

Fig.10 Simulationl

Simulation No.2

Figure 7

740
720

700

500

1500

nz = 706288

Figure 8 Square Sparse Matrix LU22=C22-

O

* SN

L21 U12 ‘003000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Longitudes

S Fig.11 Simulation2

Simulation No.3

720

700

Latitudes

ensree

Figure 9 Rectangular Sparse Matrix L22

Some  Simulations and  Contours
representation

Below12 figures represent 12 Simulation
(Fig. No.10 through Fig.No.21) . Notice that N
each simulation is different from the others. e e

Longitudes

Fig.12 Simulation 3

26
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Latitudes
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Simulation No.4
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Fig.13 Simulation4

Simulation No.5

1300 1400 1500 1600 1700
Longitudes

Fig.14 Simulation 5

Simulation No.6
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Fig.15Simulation 6

740

720

700

680

860

840

740

720

680

860

840

760

740

720

700

680

660

640

27

Latitudes

Latitudes

2000

1200

Simulation No.7

1300 1400 1500 1600 1700 1800

Longitudes

Fig.16 Simulation 7

Simulation No.8

1300 1400 1500 1600 1700 1800

Longitudes

Fig.17 Simulation 8

Simulation No.9

1300 1400 1500 1600 1700
Longitudes

Fig.18 Simulation 9

1800

1900

2000

740

720

700

680

860

640

720

680

860

840

740

720

660

840



Al-Abdallh- Using Cholesky Decomposition and Sparse Matrices for Conditional Simulation of a Gaussian 2D...

Latitudes

1000
1000

1100

1200

Simulation No.11

1300 1400 1500 1600 1700 1800
Longitudes

Fig.19 Simulation 11

Simulation No.12

1300 1400 1500 1600 1700 1800
Longitudes

Fig.20 Simulation 12

Simulation No.14

1300 1400 1500 1600 1700 1800
Longitudes

Fig.21 Simulation 14

1900

1900

1900

2000

2000

2000

740

680

660

28



Damascus University Journal For The Engineering Sciences

Vol. 33 —No.1 - 2017

REFERENCES

Alexander Malinowski, Martin Schlather, Peter J.
Menck. (2015). Analysis, Simulation and
Prediction of Multivariate Random Fields with
R-Random Fields.

Aronoff, S., (1989) Geographic Information
systems; a Management Perspective.

Atkinson P, Quattrochi DA, Goodman HM (2000)
Introduction to geostatistics and geospatial
techniques in remote sensing.

Banerjee S. (2004) On Geodetic
Computations in Spatial Modeling.

Banerjee S, et al (2008) Gaussian predictive
process models for large spatial data sets.

Bolstad W. M. (2007) Introduction to Bayesian
Statistics. 2nd Edition.

Brus DJ, Heuvelink GBM (2007) Optimization of
sample patterns for universal kriging of
environmental variables.

Chiles, J.; Delfiner, P. (1999) Geostatistics:
Modeling Spatial Uncertainty; Wiley.

Christakos, G. (2005) Simulation of Natural
Processes. In Random Field Models in Earth
Sciences; Dover: New York; pp. 295-336.

Cressie, N. (1985a) Fitting Variogram Models by
Weighted LeastSquares(Mathematical
Geology) p.563-586.

Cressie, N.A.C. (1993). Statistics for Spatial Data.
Wiley.

Cressie, N.; Wikle, C. K. (2011). Statistics for
Spatio-Temporal Data; Wiley.

David P. Landau, Kurt Binder (2009) A Guide to
Monte Carlo Simulations in Statistical Physics
(3rd Edition)

Davis, J .C., (1986) Statistics and Data Analysis in
Geology.

Davis, MW (1987a) Production of Conditional
Simulation  via  the LU Triangular
Decomposition of the Covariance Matrix
(Mathematical Geology)

Davis, MW (1987b) Generating Large Stochastic
SimulationsThe Matrix Polynomial Approx.
Method

Deutsch C.V. & Journel AG. (1992) GSLIB,
Geostatistical Software Library and User’s
Guide.

Dietrich, C. R. (1993). Computationally efficient
Cholesky factorization of a covariance matrix
with block Toeplitz structure.

Dietrich, C. R. and Newsam, G. N. (1997). Fast
and exact simulation of stationary Gaussian
processes through circulant embedding of the
covariance matrix.

John P. Wilson (2012) Digital terrain modeling.
Journel, A.G. & Huijbregts, C. (1978) Mining
Geostatistics.
Journel, A. G.
Geostatistics.
Juha Oksanen (2006) Digital Elevation Model
Errors in Terrain Analysis, Helsinki. (PhD)

Distance

(1989). Fundamentals of

29

Gomez-Hernandez, J .J . & Cassiraga E.F. (1994).
Theory and Practice of Sequential Simulation
(Workshop on Geostatistical ~Simulation,
France,1993)

Goovaerts, P. (1997). Geostatistics for Natural
Resources Evaluation; Oxford University
Press.

Gneiting Tilmann et al. (2005), Fast and Exact
Simulation of Large Gaussian Lattice Systems
in Tech-Report no.477

Hartikainen, J. and Sarkka, S. (2010). Kalman
filtering and smoothing solutions to temporal
Gaussian process regression models

Isaak, E.H. & Srivastava RM. (1989). Applied
Geostatistics.

John Dolloff and Peter Doucette (2014). The
Sequential Generation of Gaussian Random
Fields for Applications in the Geospatial
Sciences.

Khandoker S B, Sujit K. S. (2015) : spTimer:
Spatio-Temporal Bayesian Modeling Using R
Lantuejoul, C. (1994). Non Conditional Simulation
of Stationary Isotropic Multigaussian Random

Functions.

Lantuejoul C. (2002). Geostatistical simulation;
models and algorithms. Springer, Berlin

Leenaers, H. et al, (1989) Efficient Mapping of
Heavy Metal Pollution on Floodplain by
Co~Kriging from elevation data. 3D
Applications in GIS.

Leung, Y. & Yan, J. (1996). Pointsin-Polygon
Analysis Under Certainty and Uncertainty
(Geoinformatica 1), p.93-114

Marcotte, D. (1991) Cokriging With Matlab
(Computers &Geoscience ) p.1265-1280

Mgller, J. (Ed.) (2003) An introduction to model-
based geostatistics.

Morgan, B. J. T. (1984). Elements of Simulation.

Myers, J. C. (1997). Geostatistical error
Management, Quantifying Uncertainty for
Environmental Sampling and Mapping.

Mund Jan-Peter (2013) Geospatial statistics and
spatial data interpolation methods.

Ola Ahmad (2013) Stochastic representation and
analysis of rough surface topography by
random fields and integral geometry. (PhD)

Orlic’, B., (1997) Prediction Subsurface Condition
for Geo-technical Modelling (PhD).

Oyvind Hjelle (2001) Approximation of Scattered
Data with Multilevel B-Splines.

Pissanetzky, S. ( 1984) Sparse Matrix Technology

Quinonero-Candela, J. and Rasmussen, C. E.
(2005). A unifying view of sparse approximate
Gaussian process regression.

Raper, J. F. (editors), (1989) A 3-dimensional Geo-
scientific mapping and modelling system: a
conceptual design. 3D Applications in GIS.

Ripley BB. (1987) Stochastic Simulation .

Rob, K. (1987) Linear Multi-grid Methods for
Numerical Reservoir Simulation (PhD)



Al-Abdallh- Using Cholesky Decomposition and Sparse Matrices for Conditional Simulation of a Gaussian 2D...

Robin Lovelace (2015). Introduction to visualizing
spatial data in R.

Rubinstein, KY. (1981). Simulation And The
Monte Carlo Method.

Roger S. Bivand, Edzer J. Pebesma, Virgilio
Gomez-Rubio (2008) Applied Spatial Data
Analysis with R.

Stein, A, (1991). Spatial Interpolation.

Schabenberger P. O., Gotway C. A. (2004)
Statistical Methods for Spatial Data Analysis.
Simulation of Random Fields.

Scheuerer M, Schaback R and M. Schlather
(2011). Interpolation of Spatial Data-A
Stochastic or a Deterministic Problem.

Vanhatalo, J. and Vehtari, A. (2008). Modelling
local and global phenomena with sparse
Gaussian processes.

Vieira, S. R. et al (1983). Geostatistical Theory
and Application to Variability of Some
Agronomical Properties

Wackernagel, H., (1995). Multivariate
Geostatistics, An Introduction with
Applications.

Wang Jun, Brown D. G., Hammerling D. G.
(2013). Geostatistical inverse modeling for
super-resolution mapping ofcontinuous spatial
processes.

Watson, D. F., (1992) Contouring, A Guide to the
Analysis and Display of Spatial Data.

Worboys M. F. (1995) GIS A Computing
Perspective.

Youngmann, C. (1989). Spatial Data Structures
for Modeling Subsurface features, (Three
Dimensional Applications in GIS, 1989,
Taylor&_Francis).

Received 2017/01/04 gl £l
Accepted for Publ. | 2017/02/23 | L&l cadll Jsé

30



