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Abstract 
This study presents an efficient practical method for the generation of sequential conditional 

simulation of a Gaussian two-dimensional random field which we frequently encounter in GIS spatial 

analysis problems such as DEM’s generation from a limited number of data. The many realizations 

typically correspond to many reasons such as the geospatial uncertainty, the morphological perturbations 

over the surface having a complex structure or the inadequate representation of the triangulated network 

TIN or grid. These realizations with simulation-based concept enable the performance and uncertainty 

assessment that tunes to various geospatial (GIS) applications. For DEM generation and implementation 

of the conditional simulation, we need to decompose the covariance matrix of the data points and grid 

nodes by Cholesky Decomposition. Conditional simulation respect data values and transfers those values 

into the grid nodes. With the Incomplete Cholesky decomposition of the covariance matrix, we can 

produces as many simulations as needed in a single step with an accuracy, in a global sense, much better 

than the Moving Window Kriging method. In other words, we don’t need to repeat covariance matrix 

generation and decomposition many times. On the other hand, there is the problem of producing 

covariance matrices in the case of large dataset, which proved to be time consuming and may take several 

hours on PC. The present paper presents a solution to this problem using Sparse Matrices Technique and 

Cholesky decomposition to achieve conditional simulation, reducing the time required for computations 

dramatically, as well as decreasing the demand of large amount of computer memory.  For the purpose of 

this study and testing all algorithms, a MATLAB Programs were made by the author. They have been 

used in all computation stages and applied using real data. The study has shown that we can reduce 

computation time by 85%-95% according to the scale of the problem yet saving a considerable space in 

memory needed to store matrices. 
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 استخدام تحميل تشولسكي والمصفوفات شبو الفارغة لإجراء محاكاة مشروطة
 لحقل عشوائي ثنائي يتبع غاوص

 
 (1)محمد صالح العبدالمـود. 

 
 

 الممخص
يقدم ىذه البحث طريقة عممية فعالة من أجل توليد سيناريوىات محاكاة مشروطة متتابعة لحقل ثنـائي اببعـاد بمتحـول عشـوائي يتبـع غـاوص 

 DEMرتفـاعي العـدد  كمثـال توليـد النمـوذج ا  . GISوىو ما نقابمو بصورة متكـررة عنـد رجـراء التحميـل المكـاني فـي أنممـة المعمومـات الج رافيـة 
يـــة الجيومكانيــة  البنيـــة  لســطح ابرإ رنطاًــا  مـــن عــدد محــدود مـــن نقــاط الرصــد. نمجـــك ليــذا النـــوع مــن المحاكــاة لعـــدة أســباة  عــدم الموثوً

غيـر دًيـ. ..الـن. نسـتطيع مـن خـال  (grid)أو شبكي تربيعي  TINالمورفولوجية المضطربة أو المعقدة لمسطح  استخدام تمثيل شبكي مثمثاتي 
ية في التمثيـل الـذ  يتنـاغم مـع العديـد مـن التطبيقـات الجيومكانيـة  . GISفـي ىذه السيناريوىات التي تعتمد مفيوم المحاكاة تقدير ابداء والموثوً

شولسـكي لكـل مـن البيانـات ونقـاط الشـبكة نحتاج رلى تحميل مصفوفة التباين بطريقة ت DEMلإجراء المحاكاة الشرطية لمنموذج الإرتفاعي العدد  
التـام  . يساعدنا تحميل تشولسـكي غيـر(grid)التربيعية. تحترم المحاكاة الشرطية ًيم البيانات وتقوم بتحويل ىذه القيم رلى النقاط الجديدة لمشبكة 
غ بالنافــذة المتحركـة. ىـذا يعنــي أننـا   نحتــاج فـي توليـد ســيناريوىات محاكـاة عديــدة وذلـو بخطـوة واحــدة وبدًـة تفــو. الدًـة الناجمـة عــن كريجينـ

تـا  طـويا   عـدة سـاعات   لإعادة تشكيل وتحميل مصـفوفة التبـاين مـرات عديـدة. ىنـا تبـرز مشـكمة حسـاة مصـفوفة التبـاين الـذ  يمكـن أن يكخـذ وً
اسـتخدام تقنيـة المصـفوفات شـبو الفارغـة وتحميـل عند التعامل مع بيانات شبكة بحجم كبير نسبيا . يٌقدم ىذا البحث حا  ليذه المشـكمة عـن طريـ. 

تشولســكي لإنجــاز المحاكــاة الشــرطية بصــورة يــتم فييــا تقميــل زمــن الحســاة بصــورة جذريــة كمــا أنيــا نقمــل مــن الحاجــة رلــى حيــز كبيــر مــن ذاكــرة 
مراحـل الحسـاة بعـد تطبيقيـا عمـى بيانـات مج بم ة ماتاة من ًبل الباحث أنجزت كافـة االحاسة. بقصد اختبار ىذه المنيجية الجديدة تم وضع بر 

من زمن الحساة حسة حجـم المشـكمة  رضـافة رلـى التـوفير الكبيـر فـي  %95رلى  %85ختزال من اأميرت ىذه الدراسة أنو يمكننا  حقمية فعمية.
 حجوم التخزين لممصفوفات.
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Introduction  

Recent advances in geographical 

information systems and global positioning 

systems enable accurate geocoding of 

locations where scientific data are collected. 

This has encouraged the formation of 

considerable amount of data sets in many 

fields and has generated considerable 

interest in statistical modeling for location-

referenced spatial data [Chiles J., Delfiner P. 

(1999)  Moller (2003), Banerjee et al. (2004) 

and Schabenberger and Gotway (2004)] for 

a variety of methods and applications. 

Geostatistics is a subset of statistical method 

specialized in analysis, interpretation of 

geographically referenced data (Goovaerts, 

P. 1997). Cressie (1993) considers 

geostatistics to be only one of the three 

scientific fields specialized in the analysis of 

spatial data. In the most pragmatic terms, 

geostatistics is an analytical tool for 

statistical analysis of sampled field data 

(Bolstad, 2007). Today, geostatistics is not 

only used to analyze point data, but also 

increasingly in combination with various 

GIS data sources: e.g. to explore spatial 

variation in remotely sensed data, to 

quantify noise in images and for their 

enhancement and filtering (e.g. filling of the 

missing pixels), to improve Digital 

Elevation Models (DEM), generation or 

simulation DEM’s, optimize spatial 

sampling (Brus and Heuvelink, 2007), 

selection of best spatial resolution for image 

data and selection of support size for ground 

data (Atkinson and Quattrochi, et al 2000). 

Many application fields use geostatistics for 

spatial data analysis and interpretation like: 

(1) geosciences, (2) water resources, (3) 

environmental sciences, (4) agriculture 

and/or soil sciences, (5) mathematics, (6) 

statistics, (7) ecology, (8) civil engineering, 

(9) petroleum engineering and (10) 

meteorology. 

Full inference and accurate assessment of 

uncertainty often require Markov chain 

Monte Carlo (MCMC) methods [David P. 

Landau, Kurt Binder (2009), Banerjee et al., 

(2008)]. However, such fitting involves 

matrix decompositions whose complexity 

increases as       (n is the number of 

locations) at every iteration of the MCMC 

algorithm; hence the infeasibility or ‘big n’ 

problem for large data sets. Evidently, the 

problem is further aggravated when we have 

a vector of random effects at each location. 

Spatial process models for analyzing 

geostatistical data entails computations that 

become prohibitive as the number of spatial 

locations become large. In addition 

geostatistical modeling usually involves 

many variables and many locations.  

The suggested LU simulation method for 

generating realizations (or DEM 

simulations), involves producing covariance 

matrices that are too large and not 

necessarily amenable to direct 

decomposition, inversion or manipulation. 

This paper presents an efficient 

Implementation method that uses LU 

decomposition or Cholesky Method for 

symmetric matrices, as well as Sparse 

Matrix Techniques for generating 

conditional realizations using randomized 

methods. Sparse Matrix Technique can 

overcome the problem of covariance 

matrices of huge sizes. This technique 

reduces the time required for large-scale 

systems computations including the 

Eigenvalue problem as well as the demand 

of large amount of memory. The LU method 

has some other advantages over other 

methods, such as the Turning Bands (TB) or 

FFT, in that the simulation and conditioning 

are implemented simultaneously [G3. 

.0neiting Tilmann et al. (2005)]. In 

addition LU algorithm is considered much 

more simple, fast and easy to implement 

[Dietrich, C. R. (1993)]. LU decomposition 

Method due to its author Davis (1986), 

assumes that all grid nodes will be simulated 

at the same time and that all available data 

will be used. Using Sparse Matrix 

Techniques with an approximate incomplete 

decomposition method in the simulation of 

larger grid schemes, or large covariance 



Al-Abdallh- Using Cholesky Decomposition and Sparse Matrices for Conditional Simulation of a Gaussian 2D… 

20 
 

matrices, is the only way out to overcome 

the computational machine errors [Dietrich, 

C. R. and Newsam, G. N. (1997).]. In 

general, the covariance matrix of order 1000 

or more is considered as sparse [Cressie, N. 

and Huang, H.-C. (1999)] The purpose of 

this paper is to implement Conditional 

Simulation by LU decomposition (or 

Cholesky decomposition method) in 

combination with Sparse Matrices 

Technique to generates realization of N 

random variables at n spatial locations 

usually from a grid structure, using Monte 

Carlo Method (MCMC) and preserving the 

data values at original locations within the 

predefined spatial structure. On the other 

hand, Sequential Simulation algorithms are 

considered the most frequently used 

techniques, having several advantages over 

other methods, including the automatic 

handling of anisotropy as well as data 

conditioning. Their theoretical basis is 

simple and it can be applied to many 

simulations problems with single variable as 

well as with multiple variables, either 

continuous or categorical. 

Conditional Simulation Concept 

The building blocks of a conditional 

simulation are the mean function     , the 

covariance function      and the most 

important data vector   . It is required that 

the conditionally simulated process        

pass through the data    , having 

unconditional mean      and variance     . 

One might think that the kriging predicator 

       would satisfy the requirements, 

because it does interpolate the data exactly 

and it is unbiased. However as kriging has a 

smoothing tendency, it does not possess 

enough variability in order to give a 

posterior probability distribution about the 

uncertainty.  

The purpose of Conditional Simulation is 

to produce Random Fields that simulate the 

spatial variability of the underlying random 

process      [Cressie, N.; Wikle, C.K. 

(2011)], [Isaak, E.H. & Srivastava RM. 

(1989)]. Theoretically, with Conditional 

Simulation we are able to generate an 

infinite number of possible realizations of a 

Random Field                      . 
From among the infinite simulations we 

choose those that meet certain condition  

                     .For example 

if we want the simulated model honors data 

values at the actual data locations, we set: 

                      , Where   

represents data locations. 

This is known as Conditional Simulation, 

which has the same variability 

characteristics as the real observed 

phenomenon. This means that the simulated 

values          have the same first two 

experimentally found moments (namely the 

mean and the variance or Variogram) as the 

real values       . On the other hand, if not 

then the simulated values          are not 

the best possible estimators of the random 

process     . Journel and Huijbregts (1978) 

showed that the posterior estimation 

variance of Conditional Simulation is as 

twice as that of Kriging, thus one should 

emphasize that the objective of simulation is 

not to obtain the best unbiased estimator 

provided by Kriging. Conditional Simulation 

is useful to get some idea of the amount of 

variability remaining in the physical model 

or process     conditioning with respect to 

the observations [Journel, A.G (1989)]. Thus 

predictions and simulations address two 

different problems.  

Now consider the decomposition of the 

process into a kriging predicator and 

unconditional residual [Journel, A.G. & 

Huijbregts, C. (1978) ]. 

             [          
    ]        

Where        is the conditional 

simulation,       is the kriging estimators 

using the real data set (representing the 

estimated grid),        is the unconditional 

simulation, and        is simple-kriging 

estimators using the unconditional simulated 

data. The two components of the right-hand 

side of       and           
     are 

orthogonal. This orthogonality implies that 

       has the same unconditional 
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covariance as     , namely    . The quantity 

          
     can be obtained by kriging 

the difference between data values and the 

unconditionally simulated ones at data 

locations. Thus the above expression can 

rewritten as follows [Davis (1987) and 

Cressie (1993)] 

)()'()()(
1

usduscs zzxcxZxZ  


(2) 

Where        and        has the same 

meaning given above, 

       (     )             : is the 

covariance vector between data nodes and 

grid nodes. 

 )(zVar : is the variance-covariance 

matrix between the data and itself.  

          are two vectors representing 

actual data and the simulated ones at the data 

node locations. 

 

Conditional Sequential Simulation 

The principle of Conditional Sequential 

Simulation is once the new value simulated, 

it is added to the original set of conditioning 

data, and the procedure repeated [Gomez-

Hernandez, J.J , Cassiraga E.F. (1994)]. 

Finally all simulated nodes (by construction) 

will have the same initial spatial structure 

provided that all node values at data 

locations preserved. The principle of 

Sequential Simulations can be described as 

follows [Christakos, G. (2005)]: Consider 

the cpdf = ),...,,( 021 zzzzf n , where 0z   

denotes the conditioning data at 0n  locations. 

This probability function can be defined as 

)3()]...,[(

)...()(),...,(

011

0120101

zzzzf

zzzfzzfzzzf

nn

n







 

Thus the generation of a realization by 

Sequential Simulation takes the following 

steps [Christakos, G. (2005)]:  

(1)   Draw a value 1z  from the 

conditional probability distribution 1f  given 

the set 0z as conditioning data. 

(2) Draw a value 2z  from the conditional 

probability distribution 2f  given 10 zz   as 

conditioning data. … …  

(n) Draw the last value nz  from the 

conditional probability distribution nf  given 

the set  110 ,...,  nzzz as conditioning data. 

Remark 2: the Sequential Simulation is 

conditional by construction, thus eliminating 

the extensive conditioning steps required by 

other traditional methods such as the 

Turning Bands Method. 

Remark 3: There is no restriction on the 

spatial locations of the random variables 

yielding an algorithm that can be equally 

applied to generate one or more variables on 

either a regular or irregular grid. 

However, it remains the problem of 

determining the cumulative portability 

distribution function (cpdf) of any single 

random variable given any set of 

conditioning data. This problem has been 

solved for the Gaussian distribution, where 

the data first are transformed to the standard 

Gaussian values. Simple or Ordinary kriging 

is used to obtain estimates of the necessary 

conditional distribution defined by the only 

the two Gaussian parameters; namely its 

mean and variance. The simulations are then 

drawn randomly from this distribution using 

inverse transform method. Finally, the 

results of the Gaussian simulation are 

transformed back into the original data 

space. 

The Gaussian Function 

Gaussian Function is unique in 

geostatistics for its analytical simplicity and 

for being the limit distribution of many 

analytical theorems globally known as 

‘Central Limit Theorem’. If the continuous 

phenomenon }),({ DxxZ    is generated by 

the sum of a number of independent sources

},...,1,),({ KkDxxyk  with similar spatial 

distributions then the phenomenon can be 

modeled by a Multi-Gaussian RF model. 

Multi-Gaussian models are extremely 

congenial, well understood, and they have 
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large record of successful applications [John 

Dolloff and Peter Doucette (2014)]. A 

random function is said to be Gaussian or 

Multi-Gaussian if any linear combination of 

its variables follows the Gaussian 

distribution,





K

k

kk functiongaussianxYxZ
1

)4()()( 

 

In geostatistics, conditional simulation is 

used to estimate, by Monte Carlo Methods, 

complicated nonlinear functions that depend 

explicitly on multivariate stochastic 

distributions. When the simulation domain is 

discrete, a sequential procedure can be 

considered [Journel, A.G (1989)]. This 

consists of prescribing an arbitrary ordering 

of all of the points of the domain, and 

simulating each point in turn according to a 

Conditional Gaussian distribution given the 

generated values of all the previous points. 

In the case where the simulation domain is 

continuous, a ‘parallel’ procedure is 

necessary such as the Turning Bands 

Method, or LU Decomposition (Cholesky) 

Method.  

 

LU Decomposition (or Cholesky Method) 

The suggested method considers one 

covariance matrix C  of all data and grid 

locations to be generated and partitioned as 

follows: 

)5(
2221

1211











CC

CC
C  

Where 11C is the variance-covariance 

matrix between data points. tCC 2112   is the 

covariance matrix between data points and 

grid points and 22C  is the variance 

covariance matrix of grid points. If matrices 

11C  and 22C  are symmetric and positive-

definite then matrix C is also symmetric and 

positive definite and can be decomposed by 

Cholesky algorithm into lower part and 

upper part as follows, 

)6(
0

0

22

1211

2221

11



















U

UU

LL

L
ULC  

Let the vector  tWWW 21  be a vector 

of independent Gaussian Random numbers

)1,0(N , where the length of 1W  is equal to 

the number of data points and 2W  is equal to 

the number of grid nodes.  

Also, let the vector  tus zzz 21  be an 

unconditional simulation of the random 

function DxxZ ),(  at data points and 

grid nodes with the covariance matrix C  .  

Now if we set WLy  , we will find that  

)7(

)()()'(

CLUUIL

UWWELULWWEyyE tt




 

IWWE t )( is the identity matrix , because 

W  is a vector of independent random 

numbers )1,0(N  . From (7) we see that the 

vector WLy   is an unconditional 

simulation of the random function )(xZ  that 

leads to the conclusion   yzzz
t

us  21 . 

Now we can write  

)8(
222121

111

2

1
























WLWL

WL

z

z
yzus  

As we seek a conditional simulation of 

grid nodes, we can set datazz 1 , where dataz

is the vector of actual data values and set

nodeszz 2 , where gnodes zz   is the vector of 

conditional simulation (at nodes) which 

correspond to the random vector 2W only. 

On the other hand the vector 1W is no more a 

random vector and should be replaced by the 

solution of the upper part of the system (8)  

)9(1

111

1

111 datazLzLW  
 

Now replacing 1W in the system (8) yields 

the sought conditional simulation, 

)10(222

1

1121 WLzLLz datanodes  
 

Remark 1: if a grid node happens to 

coincide (or co-located) with any data point, 

then the point should be considered as data 

and must be unique (no duplication of data is 

accepted at any location). 
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Remark 2: the data vector datazz 1 in 

expression (9) have to be transposed (or 

normalized) so that the random function 

)(xZd is Gaussian Random Function

).1,0()( NxZd   

Remark 3: all covariance matrices 11C , 

12C and 22C should use the same covariance 

function so that Variogram parameters are 

normalized i.e. 
10  bc

. Note that  

)11()(

,)(,)(

2112

2211

tt

gd

t

gg

t

dd

CCzzE

CzzECzzE





 
Remark 4: multiple simulations may be 

generated easily and as many as desired 

(because the vector 2W  is a random vector),   

thus the matrix 222 WL   can be computed in 

a single step. The number of this matrix 

rows will be equal to the number of 

simulated nodes and number of columns will 

be equal to the number of simulations. Again 

we do not need to generate 1W  because it 

already replaced by dzL 1

11  

Cholesky Decomposition with Sparse 

Matrix Technique (the algorithm) 

One can write Cholesky decomposition in 

the partition form (6) in different way. If we 

put 

)12(

0

0

222212211121

12111111

2221

1211

22

1211

2221

11

2221

1211















































ULULUL

ULUL

CC

CC

U

UU

LL

L

CC

CC

 

Then: 

 Compute all covariance matrices { 11C ,

12C , 22C } and store in sparse format. 

 Compute the Cholesky decomposition of 

the square matrix 11C   and obtain the sparse 

lower triangular matrix 11L  as 

)13(1111111111

tLLULC  . 

 Find the inverse of 11L  and store it in 
1

11

L  

. Note that we don’t need to store 11U  or  

 Compute 21L  using the formula: 

  )14(1

111221

tt LCL   

Recalling from (12) : 

   ttttt LCLCUCL

ULC

1

1112

1

1112

1

111221

112121

 



 
 Compute 22L : to find 22L we must find 

)( 2222 UL  first. from (12) we have:  

 )15(221221222222 LUULCUL   

 

Then perform Incomplete Cholesky 

Decomposition of 22LU , which is also a 

sparse matrix and thus the output will be a 

sparse triangular matrix 22L . 

 

Figures (2) through (9) show the sparse 

structure of the matrices used by the LU 

decomposition method. We can easily 

recognize the sparsity of each matrix 

visually. The sparsity of each matrix is 

computed by dividing the number of non-

zero, which is fixed below each figure (nz~), 

by the total number of elements of the 

matrix.  

Figure (4) through (9) below show the 

sparse structure of the matrices for larger 

problem, where the range of influence (the 

Variogram reaches the sill) having the value 

equal to the third of the maximum distance 

in the grid system. The figures show that the 

sparsity becomes much clear. The non-zero 

elements related to the total number of 

elements especially for the initial matrices 

are less than 5%. Although each element 

needs 8 MB for storage, there is much 

saving in the processing time as well as in 

storage capacity required for completing the 

simulation than that with known traditional 

method. 
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Implementation the Algorithm 

 Dataset that has been used for testing 

programs performance (which cover 

geographic area of 1000  1000m) is 

given in the form of 3-column matrix (x, 

y, z) . It is a terrain elevation data consist 

of 266 points distributed as shown in 

(Fig.1). 

 Data in the study has been downloaded 

from internet which was related to a small 

forested area in Wisconsin, USA, 

provided by Department of Forest 

Resources, University of Minnesota. 

 

 
Fig.1 Dataset Locations and their distribution 

The Conditional simulation by 

Incomplete Cholesky decomposition using 

sparse matrix technique has been 

implemented using the special Matlab 

Program. The data is an Ascii file and 

Matlab can read it in two ways: either by 

giving the name of the ‘file’ or matrix which 

must consist of three columns: the first two 

columns contain the geographic x,y 

coordinates and the third contains the 

corresponding z values. The other way of 

entering data into the program is to give the 

names of 3 vectors, representing the 

geographic coordinates and data values, 

separately. The program computes the mean 

value and the variance in order to convert 

the data into a standard Gaussian (Davis 

1987b). The second step is to define the grid 

system that has to be simulated. The 

parameters for the simulated nodes are 

entered in two way either interactively or 

written directly in the program. Variogram 

parameters, Anisotropy, nugget effect, 

number of simulations as well as seed 

number all can be entered in the same ways 

mentioned above. The program structure is 

similar to the program ‘lusim’ provided by 

the GSLIB [Deutsch C.V. & Journel AG. 

(1992) ], although here the study uses sparse 

matrix technique with the Incomplete 

Cholesky Decomposition. All those 

functions are Matlab built-in functions, thus 

they do computational tasks, much faster 

than other functions that have no similar 

Matlab functions. Those functions use the 

traditional GSLIB methodology and their 

execution is very slow, therefor they slow 

the performance of the program. For 

example, the construction of covariance 

matrices uses the traditional method and 

takes more than 90% of the overall 

execution time. 24 Simulations were 

generated and some results of the Cholesky 

decomposition Process are shown in figures 

No 2 through figure No 9 for small scale 

problems as well as for large scale Problems. 

Final 16 Simulation results represented by 

Contour images are shown in figures No.10 

through figure. No.25.  

Conclusions 
In this paper, sparse matrices technique 

with Cholesky decomposition has been 

tested and proved as an efficient method for 

decomposing large covariance matrix by 

Cholesky method and generating simulation 

realizations. This method is based on the 

randomized sampling of covariance matrix 

for finding a sparse matrix which has much 

smaller size than the original one and 

captures most of the action of that matrix.  

This method works very well for 

approximation of DEM’s which generates as 

many simulations as needed very fast.  

When the field correlation is defined 

using Gaussian Covariance Function and 

taking into account the sparsity of the 

system and this means that only pair of 

nodes that fall within the zone of influence 

(the range) have a significant correlation, the 

rest of pairs, usually located beyond the 
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search radius, having negligible correlations 

and introducing many zero elements in the 

covariance matrix. This study shows that, 

using this method, very large covariance 

matrices can be decomposed, but only 

limitation of this method is related to storing 

a large sparse matrices in computer memory 

like matrices 11L and 22L . 

The study provided computationally 

efficient methods for fitting DEM model to a 

relatively small data set by generating spatial 

simulations conditioning on the data itself. 

Once the new value simulated, it is added to 

the original set of conditioning data, and the 

procedure repeated. Once enough 

simulationsare computed, a ‘best’ DEM 

model is then fit very quickly. The 

conditional simulation results give the most 

likely values or expected values at 

unobserved locations. As we see from the 

figures below that the simulated data reflect 

some of the uncertainties that are expected 

from any kind of simulation whether it is 

conditional or unconditional.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Computational Steps of the of the 

Variance Covariance Matrix (small scale dataset) 

 

 

Figure 3.Computation Steps - Incomplete   Cholesky 

Decomposition with Sparse Matrices (Small Scale 

Problem) 

 

Figures (4) through (9) show: 

Computational Steps– Variance-Covariance 

Matrix and Incomplete Cholesky 

Decomposition with Sparse Matrices (for 

Large Scale Problem) 

 

 
Figure 4  Sparse Covariance Matrix C11 

 

 

 
Figure 5  Sparse Covariance Matrix C22 
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Figure 6  Sparse Lower Triangular Matrix L11 

 

 
Figure 7  The Inverse Triangular Matrix of L11 

 

 
Figure 8 Square Sparse Matrix LU22=C22-

L21*U12 

 

 
Figure 9 Rectangular Sparse Matrix L22 

 

Some Simulations and Contours 

representation 

Below12 figures represent 12 Simulation  

(Fig. No.10 through Fig.No.21) . Notice that 

each simulation is different from the others. 

In fact we can do unlimited number of 

simulations and each of them will be unique. 

 
Fig.10  Simulation1 

 

 
Fig.11 Simulation2 

 

 
Fig.12  Simulation 3 
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Fig.13  Simulation4 

 

 
Fig.14  Simulation 5 

 

 
Fig.15Simulation 6 

 

 

 
Fig.16  Simulation 7 

 

 
Fig.17  Simulation 8 

 

 
Fig.18  Simulation 9 
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Fig.19   Simulation 11 

 

Fig.20  Simulation 12 

Fig.21   Simulation 14 

  



Damascus University Journal For The Engineering Sciences         Vol. 33 – No.1 - 2017 

29 
 

 

REFERENCES 

 
Alexander Malinowski, Martin Schlather, Peter J. 

Menck. (2015). Analysis, Simulation and 
Prediction of Multivariate Random Fields with 
R-Random Fields. 

Aronoff, S., (1989) Geographic Information 
systems; a Management Perspective.  

Atkinson P, Quattrochi DA, Goodman HM (2000) 
Introduction to geostatistics and geospatial 
techniques in remote sensing.  

Banerjee S. (2004) On Geodetic Distance 
Computations in Spatial Modeling. 

Banerjee S, et al (2008)  Gaussian predictive 
process models for large spatial data sets. 

Bolstad W. M. (2007) Introduction to Bayesian 
Statistics. 2nd Edition. 

Brus DJ, Heuvelink GBM (2007) Optimization of 
sample patterns for universal kriging of 
environmental variables. 

Chiles, J.; Delfiner, P. (1999) Geostatistics: 
Modeling Spatial Uncertainty; Wiley. 

Christakos, G. (2005) Simulation of Natural 
Processes. In Random Field Models in Earth 
Sciences; Dover: New York; pp. 295–336. 

Cressie, N. (1985a) Fitting Variogram Models by 
Weighted LeastSquares(Mathematical 
Geology) p.563-586. 

Cressie, N.A.C. (1993). Statistics for Spatial Data. 
Wiley. 

Cressie, N.; Wikle, C. K. (2011). Statistics for 
Spatio-Temporal Data; Wiley. 

David P. Landau, Kurt Binder (2009) A Guide to 
Monte Carlo Simulations in Statistical Physics 
(3rd Edition) 

Davis, J .C., (1986) Statistics and Data Analysis in 
Geology.  

Davis, MW (1987a) Production of Conditional 
Simulation via the LU Triangular 
Decomposition of the Covariance Matrix 
(Mathematical Geology)  

Davis, MW (1987b) Generating Large Stochastic 
SimulationsThe Matrix Polynomial Approx. 
Method  

Deutsch C.V. & Journel AG. (1992)  GSLIB, 
Geostatistical Software Library and User’s 
Guide.  

Dietrich, C. R. (1993). Computationally efficient 
Cholesky factorization of a covariance matrix 
with block Toeplitz structure. 

Dietrich, C. R. and Newsam, G. N. (1997). Fast 
and exact simulation of stationary Gaussian 
processes through circulant embedding of the 
covariance matrix. 

John P. Wilson (2012) Digital terrain modeling. 
Journel, A.G. & Huijbregts, C. (1978)  Mining 

Geostatistics. 
Journel, A. G. (1989). Fundamentals of 

Geostatistics.  
Juha Oksanen (2006) Digital Elevation Model 

Errors in Terrain Analysis, Helsinki. (PhD) 

 
 
 
 
Gomez-Hernandez, J .J . & Cassiraga E.F. (1994). 

Theory and Practice of Sequential Simulation 
(Workshop on Geostatistical Simulation, 
France,l993)  

Goovaerts, P. (1997). Geostatistics for Natural 
Resources Evaluation; Oxford University 
Press.  

Gneiting Tilmann et al. (2005), Fast and Exact 
Simulation of Large Gaussian Lattice Systems 
in Tech-Report no.477 

Hartikainen, J. and Sarkka, S. (2010). Kalman 
filtering and smoothing solutions to temporal 
Gaussian process regression models 

Isaak, E.H. & Srivastava RM. (1989). Applied 
Geostatistics.  

John Dolloff and Peter Doucette (2014). The 
Sequential Generation of Gaussian Random 
Fields for Applications in the Geospatial 
Sciences. 

Khandoker S B, Sujit K. S. (2015) : spTimer: 
Spatio-Temporal Bayesian Modeling Using R 

Lantuejoul, C. (1994). Non Conditional Simulation 
of Stationary Isotropic Multigaussian Random 
Functions. 

Lantuejoul C. (2002). Geostatistical simulation; 
models and algorithms. Springer, Berlin 

Leenaers, H. et al, (1989) Efficient Mapping of 
Heavy Metal Pollution on Floodplain by 
Co~Kriging from elevation data. 3D 
Applications in GIS.  

Leung, Y. & Yan, J. (1996). Pointsin-Polygon 
Analysis Under Certainty and Uncertainty 
(Geoinformatica 1), p.93-114  

Marcotte, D. (1991) Cokriging With Matlab 
(Computers &Geoscience ) p.1265-1280  

Møller, J. (Ed.) (2003) An introduction to model-
based geostatistics.   

Morgan, B. J. T. (1984). Elements of Simulation. 
Myers, J. C. (1997). Geostatistical error 

Management, Quantifying Uncertainty for 
Environmental Sampling and Mapping.  

Mund Jan-Peter (2013) Geospatial statistics and 
spatial data interpolation methods. 

Ola Ahmad (2013) Stochastic representation and 
analysis of rough surface topography by 
random fields and integral geometry. (PhD) 

Orlic’, B., (1997) Prediction Subsurface Condition 
for Geo-technical Modelling (PhD).  

Oyvind Hjelle (2001) Approximation of Scattered 
Data with Multilevel B-Splines. 

Pissanetzky, S. ( 1984) Sparse Matrix Technology  
Quinonero-Candela, J. and Rasmussen, C. E. 

(2005). A unifying view of sparse approximate 
Gaussian process regression. 

Raper, J. F. (editors), (1989) A 3-dimensional Geo-
scientific mapping and modelling system: a 
conceptual design. 3D Applications in GIS. 

Ripley BB. (1987) Stochastic Simulation . 
Rob, K. (1987) Linear Multi-grid Methods for 

Numerical Reservoir Simulation (PhD)  



Al-Abdallh- Using Cholesky Decomposition and Sparse Matrices for Conditional Simulation of a Gaussian 2D… 

30 
 

Robin Lovelace (2015). Introduction to visualizing 
spatial data in R. 

Rubinstein, KY. (1981). Simulation And The 
Monte Carlo Method. 

Roger S. Bivand, Edzer J. Pebesma, Virgilio 
Gómez-Rubio (2008) Applied Spatial Data 
Analysis with R. 

Stein, A, (1991). Spatial Interpolation.  
Schabenberger P. O., Gotway C. A. (2004) 

Statistical Methods for Spatial Data Analysis. 
Simulation of Random Fields. 

Scheuerer M, Schaback R and M. Schlather 
(2011). Interpolation of Spatial Data-A 
Stochastic or a Deterministic Problem.  

Vanhatalo, J. and Vehtari, A. (2008). Modelling 
local and global phenomena with sparse 
Gaussian processes. 

Vieira, S. R. et a1 (1983).  Geostatistical Theory 
and Application to Variability of Some 
Agronomical Properties  

Wackernagel, H., (1995). Multivariate 
Geostatistics, An Introduction with 
Applications.  

Wang Jun, Brown D. G., Hammerling D. G. 
(2013). Geostatistical inverse modeling for 
super-resolution mapping ofcontinuous spatial 
processes.  

Watson, D. F., (1992) Contouring, A Guide to the 
Analysis and Display of Spatial Data.  

Worboys M. F. (1995) GIS A Computing 
Perspective.  

Youngmann, C. (1989). Spatial Data Structures 
for Modeling Subsurface features, (Three 
Dimensional Applications in GIS, 1989, 
Taylor&_Francis).  

 
 

Received  40/40/7402  ريداع البحث 
Accepted for Publ. 72/47/7402 ًبول البحث لمنشر 

 


