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Abstract:

This study presents an approach for analyzing and detecting variations in gait between
healthy individuals and above-knee amputees with lower-limb prosthetics using principal
component analysis (PCA) and self-organizing maps (SOM). The methodology begins
with the extraction of principal components from the angular movements of the hip, knee,
and ankle joints to capture the most significant movement patterns observed during
walking in the sagittal plane. The SOM network then uses these principal components, or
principal movements, as inputs. The role of the SOM is to classify the data and
automatically discern differences between healthy individuals and amputees based on the
principal movement elements. Through the classification results of the SOM network for
the principal components, the study demonstrates the potential of using SOM to detect
differences due to prosthetic limbs, including distinctive movement patterns in the
extension and flexion patterns of the three lower extremity joints (ankle, knee, and hip).
The findings suggest that employing the principal component analysis of gait with SOM
technology can aid in constructing a diagnostic system that supports medical decision-
making and uses the variance in principal movement elements for rapid identification
through neural networks. Furthermore, this method could improve lower limb prosthetic
design and rehabilitation programs to restore natural gait mechanisms in amputees.

Keywords: Gait analysis, Principal component analysis (PCA), Self-Organizing Maps
(SOM), amputee gait, prosthesis.
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1. Introduction:

Human movement is a complex process
coordinated by a motor system with an
abundance of degrees of freedom, making it a
central challenge in biomechanics and motor
control research (Bernstein, 1967). Traditional
approaches focus on single outcome variables
like the Center of Mass or Center of Pressure
(Quijoux et al., 2020; Mehdizadeh et al., 2021),
but this has been criticized for oversimplifying
the complexity of a multi-dimensional system
(Federolf et al., 2021). Principal component
analysis (PCA) has emerged as an alternative,
allowing for the decomposition of high-
dimensional movement data into principal
components (PCs) that explain the system's
variance (Troje, 2002; Federolf, 2012). PCA
breaks down complex signals into PCs, each
explaining a portion of variance. Studies often
use body-segment markers to feed into PCA,
creating high-dimensional inputs (Federolf et al.,
2012; Ross et al., 2018). The first PC captures the
largest variance, followed by subsequent PCs.
Lower-ranked PCs often represent important
movement strategies, such as postural control
strategies in bipedal movements (Federolf et al.,
2013b). In gait studies, a few principal
movements (PMs) often explain most of the
variance (O’Reilly, 2021; Promsri, 2022), with
just two PMs covering over 90% of movement
variance during treadmill walking (Federolf et
al.,, 2012). PCA offers several advantages: it
supports a  non-reductionist  view  of
biomechanical analysis, allowing for a more
holistic understanding of movement (Federolf et
al., 2021; Bolt et al., 2021). Furthermore, it is
data-driven and minimizes investigator bias.
However, a key limitation is that PCA studies are
often confined to controlled environments,
making it unclear if findings can generalize to
field settings with wearable sensors. Differences
in marker sets and measurement systems may
affect PCA outcomes, but the extent of this
impact remains unknown.
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In this study, we aim to utilize self-organizing
maps (SOMs) to detect and visualize the most
significant differences in gait between healthy
individuals and amputees by clustering principal
components of joint angles. The approach begins
by calculating the PCs of the hip, knee, and ankle
joint angles for both groups. These PCs reduce
data complexity while preserving the most
significant movement patterns. These principal
components are then used as input to the SOM,
which is particularly effective for clustering and
visualizing high-dimensional data. By projecting
this data onto a lower-dimensional grid, the SOM
preserves the topological structure of the
movement variability between the two groups.
As an unsupervised learning method, the SOM
clusters similar patterns based on the PCs.
Significant differences in movement patterns
between healthy individuals and amputees will
result in distinct clusters on the SOM grid.
Comparing the clusters formed by healthy
individuals to those of amputees allows us to
detect which principal components show the
most divergence between the two groups. The
SOM net highlights the PCs, or combinations of
PCs, that differ the most between healthy and
amputee subjects, providing insights into
movement patterns and compensatory strategies
used by amputees. This method will help identify
the key movement clusters that differentiate the
two groups based on the principal component
analysis of joint angles.

2. Material and Methods:
2.1. Data collection

The biomechanics dataset by Hood et al. (2020)
includes data from 18 individuals with unilateral
above-knee amputations walking at various
speeds, with subjects divided into K2 and K3
groups based on their ability to comfortably walk
at 0.8 m/s. The K2 group walked at speeds
ranging from 0.4 to 0.8 m/s, while the K3 group
walked at speeds between 0.6 and 1.4 m/s. Full-
body biomechanics data was collected using a
10-camera motion capture system and a fully
instrumented treadmill. The dataset aims to help
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yet informative comparison of gait patterns.

Vo () 72-72 claiall ¢ sl L aladll
clinicians understand the biomechanical 191 2. Input to Self-Organizing Maps:
demands of walking with a prosthesis at different o .
. . . 192  The principal components derived from PCA are
speeds, provide researchers with insights into )
. . . . . 193  used as input features for the SOM. SOMs are
amputee gait deviations, and assist engineers in . ) i )
- . . . 194  particularly effective at handling high-
improving prosthesis design. : ) i )
195 dimensional data and project it onto a lower-
The complete dataset by Moreira et al. (2021) 196  dimensional grid (typically 2D) while preserving
includes raw and processed data from 16 healthy 197  the topological relationships within the data. The
participants walking on a flat surface at seven 198 SOM algorithm maps each input vector x, which
controlled speeds (1.0 to 4.0 km/h). The raw data 199  is represented by its PCs, to a specific node on
comprises 3D joint trajectories of 24 markers, 200  the grid based on the similarity of the input data.
ground reaction forces, force plate moments, 201  Eachnode in the SOM is associated with a weight
center of pressures, and EMG signals from 202  vector www, which is updated during training to
selected muscles. Processed data includes gait 203  match the input patterns. The update rule is given
cycle-normalized information, such as filtered 204 by:
EMG signals, 3D ground reaction forces, joint 205 < N
angles, and torques. wt+1) = w®) + «®) - ha(®) - (x(0 ~ w(®)
206 (2)
2.1. Methodology 207  where a(?) is the learning rate, and h;(t) is the
In this study, we apply PCA and SOM to analyze 208  neighborhood function that ensures nearby nodes
and visualize differences in gait patterns between 209 in the grid are updated similarly to maintain
healthy individuals and amputees. The 210  topological relationships. By using the PCs as
methodology involves several key components, 211  input, the SOM clusters the gait data from healthy
which are described in detail below: 212  and amputee individuals based on underlying
213  movement patterns.
1. PCA:
The joint angles of the hip, knee, and ankle for 214 3. Clustering for Differences:
both healthy and amputee groups are first 215  As an unsupervised learning method, the SOM
processed through PCA. The latter reduces the 216  clusters the input data into distinct regions on the
dimensionality of the original gait data, 217  map. Each region represents similar patterns of
transforming it into a set of orthogonal PCs that 218 movement, as captured by the PCs. If significant
account for the maximum variance in the dataset. 219  differences in gait exist between healthy
Mathematically, PCA computes the eigenvectors 220  individuals and amputees, their PCs will form
of the covariance matrix C of the joint angle data, 221  distinct clusters on the SOM grid. The clusters
where: 222  representing healthy individuals can be spatially
. 223  compared with those representing amputees,
C=-3L&i—wk-w' ey 224  providing a clear visualization of which principal
h he o led dui 225  components—reflecting key aspects of gait
where x; represents the joint angle a.ta, and e 1s 226  variability—differ the most between the two
the mean of the dataset. The eigenvectors 227 groups
corresponding to the largest eigenvalues are ’
selected as the principal components, capturing 228 4. Visualization of SOM Clusters:
the most significant patterns of joint movement ) ) ) )
. 229  The resulting SOM grid provides a visual
in a reduced form. These PCs are used to _ , s
. S 230 representation of the relationships between the
represent the primary modes of variability ; i
. o 231  PCs for both groups. Each point on the grid
between the two groups, allowing for a simplified ) , )
232  corresponds to a specific gait pattern, with
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clusters of points indicating similar movement
strategies. By examining the grid, we can observe
which combinations of PCs lead to distinct
movement behaviors in healthy individuals
versus amputees. This visualization helps in
identifying  key  differences, such as
compensatory strategies used by amputees, and
reveals the underlying biomechanical adaptations
captured by the PCs.

3. Results and Discussion:

Starting with the difference in gait patterns
between a healthy individual and an amputee
with a prosthesis, Figure 1 reveals significant
variations in joint trajectories. The healthy gait
pattern on the left, shown in blue, exhibits
smoother and more symmetrical movements,
with a wider range of motion. In contrast, the
amputee's gait on the right, depicted in pink,
shows more constrained and asymmetric
patterns, particularly in the hip and knee regions.
The prosthetic gait demonstrates reduced flexion-
extension, likely due to compensatory strategies
for balancing and propulsion, indicating
biomechanical adaptations necessary for the
amputee's locomotion. These differences
highlight the impact of the prosthesis on gait
efficiency and coordination. All graphical data
were produced using the first subject in both
datasets.

—e S

Healthy gait Gait with prosthesis

Figure 1 — Gait patterns of healthy and amputated
subjects.
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The PMs of a healthy gait, derived through PCA,
are illustrated in Figure 2. Each panel represents
a different principal movement, ordered by the
amount of variance explained in the gait data.
PMI1 captures the most significant variance,
depicting overall gait dynamics involving major
limb movements. Subsequent PMs (PM2 through
PM9) show progressively smaller contributions
to the total variance, focusing on finer gait
details, such as minor adjustments in joint angles.
These principal movements collectively offer a
reduced-dimensional view of the gait cycle,
highlighting how the most critical elements of
motion can be simplified and understood through
PCA. As the variance explained decreases with
each PM, the movements depicted become more
subtle, focusing on specific adjustments within
the gait pattern that are less critical to overall
movement but still important in the
comprehensive biomechanical analysis.

The PMs of an amputee's gait with a prosthesis
derived through PCA are illustrated in Figure 3.
Similar to the analysis of healthy gait, each panel
represents a principal movement, ordered by the
variance explained. PM1, which captures the
largest portion of wvariance, shows more
constrained and asymmetric movements
compared to a healthy gait, particularly in the
range of motion of the prosthetic limb.
Subsequent PMs (PM2 through PM9) reveal
smaller and more localized patterns of
movement. These movements are characterized
by compensatory strategies due to the prosthesis,
such as reduced joint flexibility and altered
postural adjustments. The decomposition of the
gait into principal components highlights how the
prosthetic limb impacts overall movement, with
the lower-ranked PMs indicating subtle
biomechanical differences that contribute to the
overall gait adaptation.
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PM #1

PM #4

PM #7

PM #2

PM #5

PM #3

PM #6

Figure 2 - PMs of healthy gait derived using PCA. Each panel (PM1 to PM9) represents a principal
movement, ordered by the amount of variance explained.

PM #1

)

PM #4

PM #7

PM #2

PM #5

PM #8

PM #3

PM #6

Figure 3 - PMs of an amputee's gait with a prosthesis.

In Table 1, we address the outcomes of a SOM
analysis applied to the PCs derived from gait data
of healthy individuals and amputees. The
principal components, ranked by the percentage
of variance they explain in the dataset, highlight
key differences in movement patterns between
the two groups. These differences are visualized

317
318
319
320
321
322
323

through the SOM grid, which clusters movement
patterns based on the PCs. For PCI1, which
explains 40% of the variance, the healthy
individuals exhibit smooth, coordinated anterior-
posterior leg and arm swings. In contrast, the
amputee subjects show reduced swing and
asymmetric leg movements. The SOM grid
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324 reflects these differences through a larger spread 327  suggests that the prosthesis significantly alters
325 of clusters for amputees, indicating greater 328  their overall gait mechanics.
326  variability in their compensatory strategies. This
329 Table 1. Table: SOM outcomes comparing principal components of gait between healthy and amputee
330 subjects, highlighting key movement clusters and differences in the SOM grid.
Variance
PM | Explained gley M:)\r/]ement PM Cluster Notable Differences (SOM Grid)
(%) uster (Healthy) (Amputee)
Smooth anterior- | Reduced swing, | Larger spread in SOM cluster for
PM1 | 40% posterior leg and arm | asymmetric  leg | amputees, indicating greater
swing movements variability in compensatory strategies
. . L|m_|ted hip Distinct clusters in SOM showing
Hip and knee flexion- | flexion, S
PM2 | 20% R altered coordination patterns for
extension in sync exaggerated knee .
2 prosthetic leg
flexion
Balanced body posture Shifts in - trunk Clustering shows increased postural
: L posture, : . X
PM3 | 15% with minimal . adjustments in amputees, especially
; compensating for :
adjustments . during stance phase
prosthesis
Reduced
Stab_le . an_kle dorsiflexion, Amputee SOM cluster exhibits more
PM4 | 10% dorsiflexion  during RS e
. compensatory foot | variability in foot positioning
swing phase
movement
Coordinated arm | Less coordinated | SOM clusters highlight decreased
PM5 | 7% movement during | arm  movement, | upper-body movement coordination
stride asymmetry in amputee subjects
. . . Incrgased knee More dispersed SOM clusters for
Minor adjustments in | rotation, S T
PM6 | 5% . amputees, indicating irregular knee
knee rotation compensatory X
rotation patterns
torque
Fine adjustments in | Restricted Amputee clusters show constrained
PM7 | 3% ankle inversion, altered | foot  adjustments, highlighting
inversion/eversion foot angle limited flexibility
331
332  PC2, explaining 20% of the variance, shows that 344  results in increased postural adjustment clusters
333 healthy subjects have synchronized hip and knee 345  inthe SOM grid for amputees, particularly during
334  flexion-extension, whereas amputees display 346  the stance phase of gait. PC4, contributing 10%
335  limited hip flexion and exaggerated knee flexion. 347 of the variance, demonstrates that healthy
336  This leads to distinct clusters in the SOM grid, 348  subjects exhibit stable ankle dorsiflexion during
337  highlighting altered coordination patterns in 349  the swing phase. In contrast, amputees show
338 amputees, particularly affecting their prosthetic 350 reduced dorsiflexion and compensatory foot
339  leg. For PC3, which accounts for 15% of the 351 movements. The SOM clusters for amputees
340  variance, healthy individuals maintain balanced 352 show more variability in foot positioning,
341  body posture with minimal adjustments, whereas 353 indicating challenges in achieving the same
342  amputees exhibit changes in trunk posture as a 354  degree of stability and flexibility in their gait. For
343  compensatory strategy for the prosthesis. This 355 PC5, with 7% variance explained, healthy
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individuals exhibit coordinated arm movements
during the stride, while amputees show less
coordinated and more asymmetric arm
movements. This is reflected in the SOM grid,
where decreased upper-body coordination in
amputees is highlighted by the distinct cluster
formations. PC6, explaining 5% of the variance,
captures minor adjustments in knee rotation in
healthy individuals, while amputees display
increased knee rotation, likely as a compensatory
response. The SOM grid shows more dispersed
clusters for amputees, reflecting irregular knee
rotation patterns that could contribute to altered
gait dynamics.

Finally, PC7, accounting for 3% of the variance,
shows that healthy subjects make fine
adjustments in ankle inversion and eversion. In
contrast, amputees exhibit restricted inversion
and altered foot angles, with the SOM grid
showing constrained foot adjustments. This
highlights the limited flexibility in the amputees'
gait, likely due to the prosthesis. These findings
have significant implications for understanding
amputee biomechanical adaptations. The SOM
analysis effectively clusters the principal
movements that differ between healthy and
amputee subjects, providing insight into
compensatory strategies used by amputees.
These differences, particularly in PCs related to
overall movement coordination and stability,
highlight the challenges amputees face in
replicating natural gait patterns, shedding light on
areas for potential improvement in prosthetic
design and rehabilitation strategies.
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