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فوق الركبة   في المشية بين الأفراد الأصحاء والمبتورين  وكشف التباينلتحليل    ا  هذه الدراسة نهجتقدم   9 

.  (SOM)  ذاتية التنظيمخرائط  شبكة الو  (PCA) باستخدام تحليل المكونات الأساسية  مع أطراف اصطناعية سفلية 10 

لالتقاط أنماط    والركبة والكاحل  الوركمن    الزاوية لكلالحركة  لتغيرات   استخراج المكونات الأساسيةتبدأ المنهجية ب 11 

المشي أثناء  السهمي  الحركة الأكثر أهمية  الحركات  على المستوى  . ثم يتم استخدام هذه المكونات الأساسية أو  12 

دور  SOMلشبكة    كمدخلات الأساسية يكمن   .SOM  آلي بشكل  الاختلاف  وكشف  البيانات  تصنيف  بين   في  13 

 SOM 14  شبكة  نتائج تصنيف. من خلال  بالاعتماد على العناصر الأساسية للحركة  الأشخاص الأصحاء والمبتورين

في كشف وتحديد الاختلافات بين الأشخاص   SOMإمكانية توظيف شبكة  الدراسة    أظهرت،  للمكونات الأساسية 15 
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Abstract: 39 

This study presents an approach for analyzing and detecting variations in gait between 40 

healthy individuals and above-knee amputees with lower-limb prosthetics using principal 41 

component analysis (PCA) and self-organizing maps (SOM). The methodology begins 42 

with the extraction of principal components from the angular movements of the hip, knee, 43 
and ankle joints to capture the most significant movement patterns observed during 44 

walking in the sagittal plane. The SOM network then uses these principal components, or 45 

principal movements, as inputs. The role of the SOM is to classify the data and 46 

automatically discern differences between healthy individuals and amputees based on the 47 
principal movement elements. Through the classification results of the SOM network for 48 

the principal components, the study demonstrates the potential of using SOM to detect 49 

differences due to prosthetic limbs, including distinctive movement patterns in the 50 

extension and flexion patterns of the three lower extremity joints (ankle, knee, and hip). 51 
The findings suggest that employing the principal component analysis of gait with SOM 52 

technology can aid in constructing a diagnostic system that supports medical decision- 53 

making and uses the variance in principal movement elements for rapid identification 54 

through neural networks. Furthermore, this method could improve lower limb prosthetic 55 
design and rehabilitation programs to restore natural gait mechanisms in amputees. 56 

Keywords: Gait analysis, Principal component analysis (PCA), Self-Organizing Maps 57 

(SOM), amputee gait, prosthesis. 58 
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1. Introduction: 59 

Human movement is a complex process 60 

coordinated by a motor system with an 61 

abundance of degrees of freedom, making it a 62 

central challenge in biomechanics and motor 63 

control research (Bernstein, 1967). Traditional 64 

approaches focus on single outcome variables 65 

like the Center of Mass or Center of Pressure 66 

(Quijoux et al., 2020; Mehdizadeh et al., 2021), 67 

but this has been criticized for oversimplifying 68 

the complexity of a multi-dimensional system 69 

(Federolf et al., 2021). Principal component 70 

analysis (PCA) has emerged as an alternative, 71 

allowing for the decomposition of high-72 

dimensional movement data into principal 73 

components (PCs) that explain the system's 74 

variance (Troje, 2002; Federolf, 2012). PCA 75 

breaks down complex signals into PCs, each 76 

explaining a portion of variance. Studies often 77 

use body-segment markers to feed into PCA, 78 

creating high-dimensional inputs (Federolf et al., 79 

2012; Ross et al., 2018). The first PC captures the 80 

largest variance, followed by subsequent PCs. 81 

Lower-ranked PCs often represent important 82 

movement strategies, such as postural control 83 

strategies in bipedal movements (Federolf et al., 84 

2013b). In gait studies, a few principal 85 

movements (PMs) often explain most of the 86 

variance (Ó’Reilly, 2021; Promsri, 2022), with 87 

just two PMs covering over 90% of movement 88 

variance during treadmill walking (Federolf et 89 

al., 2012). PCA offers several advantages: it 90 

supports a non-reductionist view of 91 

biomechanical analysis, allowing for a more 92 

holistic understanding of movement (Federolf et 93 

al., 2021; Bolt et al., 2021). Furthermore, it is 94 

data-driven and minimizes investigator bias. 95 

However, a key limitation is that PCA studies are 96 

often confined to controlled environments, 97 

making it unclear if findings can generalize to 98 

field settings with wearable sensors. Differences 99 

in marker sets and measurement systems may 100 

affect PCA outcomes, but the extent of this 101 

impact remains unknown. 102 

 103 

In this study, we aim to utilize self-organizing 104 

maps (SOMs) to detect and visualize the most 105 

significant differences in gait between healthy 106 

individuals and amputees by clustering principal 107 

components of joint angles. The approach begins 108 

by calculating the PCs of the hip, knee, and ankle 109 

joint angles for both groups. These PCs reduce 110 

data complexity while preserving the most 111 

significant movement patterns. These principal 112 

components are then used as input to the SOM, 113 

which is particularly effective for clustering and 114 

visualizing high-dimensional data. By projecting 115 

this data onto a lower-dimensional grid, the SOM 116 

preserves the topological structure of the 117 

movement variability between the two groups. 118 

As an unsupervised learning method, the SOM 119 

clusters similar patterns based on the PCs. 120 

Significant differences in movement patterns 121 

between healthy individuals and amputees will 122 

result in distinct clusters on the SOM grid. 123 

Comparing the clusters formed by healthy 124 

individuals to those of amputees allows us to 125 

detect which principal components show the 126 

most divergence between the two groups. The 127 

SOM net highlights the PCs, or combinations of 128 

PCs, that differ the most between healthy and 129 

amputee subjects, providing insights into 130 

movement patterns and compensatory strategies 131 

used by amputees. This method will help identify 132 

the key movement clusters that differentiate the 133 

two groups based on the principal component 134 

analysis of joint angles. 135 

2. Material and Methods: 136 

2.1. Data collection 137 

The biomechanics dataset by Hood et al. (2020) 138 

includes data from 18 individuals with unilateral 139 

above-knee amputations walking at various 140 

speeds, with subjects divided into K2 and K3 141 

groups based on their ability to comfortably walk 142 

at 0.8 m/s. The K2 group walked at speeds 143 

ranging from 0.4 to 0.8 m/s, while the K3 group 144 

walked at speeds between 0.6 and 1.4 m/s. Full-145 

body biomechanics data was collected using a 146 

10-camera motion capture system and a fully 147 

instrumented treadmill. The dataset aims to help 148 
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clinicians understand the biomechanical 149 

demands of walking with a prosthesis at different 150 

speeds, provide researchers with insights into 151 

amputee gait deviations, and assist engineers in 152 

improving prosthesis design. 153 

The complete dataset by Moreira et al. (2021) 154 

includes raw and processed data from 16 healthy 155 

participants walking on a flat surface at seven 156 

controlled speeds (1.0 to 4.0 km/h). The raw data 157 

comprises 3D joint trajectories of 24 markers, 158 

ground reaction forces, force plate moments, 159 

center of pressures, and EMG signals from 160 

selected muscles. Processed data includes gait 161 

cycle-normalized information, such as filtered 162 

EMG signals, 3D ground reaction forces, joint 163 

angles, and torques. 164 

2.1. Methodology  165 

In this study, we apply PCA and SOM to analyze 166 

and visualize differences in gait patterns between 167 

healthy individuals and amputees. The 168 

methodology involves several key components, 169 

which are described in detail below: 170 

1. PCA: 171 

The joint angles of the hip, knee, and ankle for 172 

both healthy and amputee groups are first 173 

processed through PCA. The latter reduces the 174 

dimensionality of the original gait data, 175 

transforming it into a set of orthogonal PCs that 176 

account for the maximum variance in the dataset. 177 

Mathematically, PCA computes the eigenvectors 178 

of the covariance matrix C of the joint angle data, 179 

where: 180 

C =  
1

𝑛
∑ (xi −  μ)(xi −  μ)Tn

i=1   (1) 181 

where 𝑥𝑖 represents the joint angle data, and μ is 182 

the mean of the dataset. The eigenvectors 183 

corresponding to the largest eigenvalues are 184 

selected as the principal components, capturing 185 

the most significant patterns of joint movement 186 

in a reduced form. These PCs are used to 187 

represent the primary modes of variability 188 

between the two groups, allowing for a simplified 189 

yet informative comparison of gait patterns. 190 

2. Input to Self-Organizing Maps: 191 

The principal components derived from PCA are 192 

used as input features for the SOM. SOMs are 193 

particularly effective at handling high-194 

dimensional data and project it onto a lower-195 

dimensional grid (typically 2D) while preserving 196 

the topological relationships within the data. The 197 

SOM algorithm maps each input vector x, which 198 

is represented by its PCs, to a specific node on 199 

the grid based on the similarity of the input data. 200 

Each node in the SOM is associated with a weight 201 

vector www, which is updated during training to 202 

match the input patterns. The update rule is given 203 

by: 204 

w(t + 1) =  w(t) +  α(t) ⋅ hci(t) ⋅ (x(t) −  w(t)) 205 

 (2) 206 

where α(t) is the learning rate, and hci(t) is the 207 

neighborhood function that ensures nearby nodes 208 

in the grid are updated similarly to maintain 209 

topological relationships. By using the PCs as 210 

input, the SOM clusters the gait data from healthy 211 

and amputee individuals based on underlying 212 

movement patterns. 213 

3. Clustering for Differences: 214 

As an unsupervised learning method, the SOM 215 

clusters the input data into distinct regions on the 216 

map. Each region represents similar patterns of 217 

movement, as captured by the PCs. If significant 218 

differences in gait exist between healthy 219 

individuals and amputees, their PCs will form 220 

distinct clusters on the SOM grid. The clusters 221 

representing healthy individuals can be spatially 222 

compared with those representing amputees, 223 

providing a clear visualization of which principal 224 

components—reflecting key aspects of gait 225 

variability—differ the most between the two 226 

groups. 227 

4. Visualization of SOM Clusters: 228 

The resulting SOM grid provides a visual 229 

representation of the relationships between the 230 

PCs for both groups. Each point on the grid 231 

corresponds to a specific gait pattern, with 232 
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clusters of points indicating similar movement 233 

strategies. By examining the grid, we can observe 234 

which combinations of PCs lead to distinct 235 

movement behaviors in healthy individuals 236 

versus amputees. This visualization helps in 237 

identifying key differences, such as 238 

compensatory strategies used by amputees, and 239 

reveals the underlying biomechanical adaptations 240 

captured by the PCs. 241 

3. Results and Discussion: 242 

Starting with the difference in gait patterns 243 

between a healthy individual and an amputee 244 

with a prosthesis, Figure 1 reveals significant 245 

variations in joint trajectories. The healthy gait 246 

pattern on the left, shown in blue, exhibits 247 

smoother and more symmetrical movements, 248 

with a wider range of motion. In contrast, the 249 

amputee's gait on the right, depicted in pink, 250 

shows more constrained and asymmetric 251 

patterns, particularly in the hip and knee regions. 252 

The prosthetic gait demonstrates reduced flexion-253 

extension, likely due to compensatory strategies 254 

for balancing and propulsion, indicating 255 

biomechanical adaptations necessary for the 256 

amputee's locomotion. These differences 257 

highlight the impact of the prosthesis on gait 258 

efficiency and coordination. All graphical data 259 

were produced using the first subject in both 260 

datasets. 261 

 262 

Figure 1 – Gait patterns of healthy and amputated 263 
subjects. 264 

The PMs of a healthy gait, derived through PCA, 265 

are illustrated in Figure 2. Each panel represents 266 

a different principal movement, ordered by the 267 

amount of variance explained in the gait data. 268 

PM1 captures the most significant variance, 269 

depicting overall gait dynamics involving major 270 

limb movements. Subsequent PMs (PM2 through 271 

PM9) show progressively smaller contributions 272 

to the total variance, focusing on finer gait 273 

details, such as minor adjustments in joint angles. 274 

These principal movements collectively offer a 275 

reduced-dimensional view of the gait cycle, 276 

highlighting how the most critical elements of 277 

motion can be simplified and understood through 278 

PCA. As the variance explained decreases with 279 

each PM, the movements depicted become more 280 

subtle, focusing on specific adjustments within 281 

the gait pattern that are less critical to overall 282 

movement but still important in the 283 

comprehensive biomechanical analysis. 284 

The PMs of an amputee's gait with a prosthesis 285 

derived through PCA are illustrated in Figure 3. 286 

Similar to the analysis of healthy gait, each panel 287 

represents a principal movement, ordered by the 288 

variance explained. PM1, which captures the 289 

largest portion of variance, shows more 290 

constrained and asymmetric movements 291 

compared to a healthy gait, particularly in the 292 

range of motion of the prosthetic limb. 293 

Subsequent PMs (PM2 through PM9) reveal 294 

smaller and more localized patterns of 295 

movement. These movements are characterized 296 

by compensatory strategies due to the prosthesis, 297 

such as reduced joint flexibility and altered 298 

postural adjustments. The decomposition of the 299 

gait into principal components highlights how the 300 

prosthetic limb impacts overall movement, with 301 

the lower-ranked PMs indicating subtle 302 

biomechanical differences that contribute to the 303 

overall gait adaptation. 304 
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 305 

Figure 2 - PMs of healthy gait derived using PCA. Each panel (PM1 to PM9) represents a principal 306 

movement, ordered by the amount of variance explained. 307 

 308 

Figure 3 - PMs of an amputee's gait with a prosthesis. 309 

In Table 1, we address the outcomes of a SOM 310 

analysis applied to the PCs derived from gait data 311 

of healthy individuals and amputees. The 312 

principal components, ranked by the percentage 313 

of variance they explain in the dataset, highlight 314 

key differences in movement patterns between 315 

the two groups. These differences are visualized 316 

through the SOM grid, which clusters movement 317 

patterns based on the PCs. For PC1, which 318 

explains 40% of the variance, the healthy 319 

individuals exhibit smooth, coordinated anterior-320 

posterior leg and arm swings. In contrast, the 321 

amputee subjects show reduced swing and 322 

asymmetric leg movements. The SOM grid 323 
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reflects these differences through a larger spread 324 

of clusters for amputees, indicating greater 325 

variability in their compensatory strategies. This 326 

suggests that the prosthesis significantly alters 327 

their overall gait mechanics. 328 

Table 1. Table: SOM outcomes comparing principal components of gait between healthy and amputee 329 

subjects, highlighting key movement clusters and differences in the SOM grid. 330 

 PM 

Variance 

Explained 

(%) 

Key Movement 

Cluster (Healthy) 

PM Cluster 

(Amputee) 
Notable Differences (SOM Grid) 

PM1 40% 

Smooth anterior-

posterior leg and arm 

swing 

Reduced swing, 

asymmetric leg 

movements 

Larger spread in SOM cluster for 

amputees, indicating greater 

variability in compensatory strategies 

PM2 20% 
Hip and knee flexion-

extension in sync 

Limited hip 

flexion, 

exaggerated knee 

flexion 

Distinct clusters in SOM showing 

altered coordination patterns for 

prosthetic leg 

PM3 15% 

Balanced body posture 

with minimal 

adjustments 

Shifts in trunk 

posture, 

compensating for 

prosthesis 

Clustering shows increased postural 

adjustments in amputees, especially 

during stance phase 

PM4 10% 

Stable ankle 

dorsiflexion during 

swing phase 

Reduced 

dorsiflexion, 

compensatory foot 

movement 

Amputee SOM cluster exhibits more 

variability in foot positioning 

PM5 7% 

Coordinated arm 

movement during 

stride 

Less coordinated 

arm movement, 

asymmetry 

SOM clusters highlight decreased 

upper-body movement coordination 

in amputee subjects 

PM6 5% 
Minor adjustments in 

knee rotation 

Increased knee 

rotation, 

compensatory 

torque 

More dispersed SOM clusters for 

amputees, indicating irregular knee 

rotation patterns 

PM7 3% 

Fine adjustments in 

ankle 

inversion/eversion 

Restricted 

inversion, altered 

foot angle 

Amputee clusters show constrained 

foot adjustments, highlighting 

limited flexibility 

 331 

PC2, explaining 20% of the variance, shows that 332 

healthy subjects have synchronized hip and knee 333 

flexion-extension, whereas amputees display 334 

limited hip flexion and exaggerated knee flexion. 335 

This leads to distinct clusters in the SOM grid, 336 

highlighting altered coordination patterns in 337 

amputees, particularly affecting their prosthetic 338 

leg. For PC3, which accounts for 15% of the 339 

variance, healthy individuals maintain balanced 340 

body posture with minimal adjustments, whereas 341 

amputees exhibit changes in trunk posture as a 342 

compensatory strategy for the prosthesis. This 343 

results in increased postural adjustment clusters 344 

in the SOM grid for amputees, particularly during 345 

the stance phase of gait. PC4, contributing 10% 346 

of the variance, demonstrates that healthy 347 

subjects exhibit stable ankle dorsiflexion during 348 

the swing phase. In contrast, amputees show 349 

reduced dorsiflexion and compensatory foot 350 

movements. The SOM clusters for amputees 351 

show more variability in foot positioning, 352 

indicating challenges in achieving the same 353 

degree of stability and flexibility in their gait. For 354 

PC5, with 7% variance explained, healthy 355 
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individuals exhibit coordinated arm movements 356 

during the stride, while amputees show less 357 

coordinated and more asymmetric arm 358 

movements. This is reflected in the SOM grid, 359 

where decreased upper-body coordination in 360 

amputees is highlighted by the distinct cluster 361 

formations. PC6, explaining 5% of the variance, 362 

captures minor adjustments in knee rotation in 363 

healthy individuals, while amputees display 364 

increased knee rotation, likely as a compensatory 365 

response. The SOM grid shows more dispersed 366 

clusters for amputees, reflecting irregular knee 367 

rotation patterns that could contribute to altered 368 

gait dynamics. 369 

Finally, PC7, accounting for 3% of the variance, 370 

shows that healthy subjects make fine 371 

adjustments in ankle inversion and eversion. In 372 

contrast, amputees exhibit restricted inversion 373 

and altered foot angles, with the SOM grid 374 

showing constrained foot adjustments. This 375 

highlights the limited flexibility in the amputees' 376 

gait, likely due to the prosthesis. These findings 377 

have significant implications for understanding 378 

amputee biomechanical adaptations. The SOM 379 

analysis effectively clusters the principal 380 

movements that differ between healthy and 381 

amputee subjects, providing insight into 382 

compensatory strategies used by amputees. 383 

These differences, particularly in PCs related to 384 

overall movement coordination and stability, 385 

highlight the challenges amputees face in 386 

replicating natural gait patterns, shedding light on 387 

areas for potential improvement in prosthetic 388 

design and rehabilitation strategies. 389 
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