مجلة جامعة دمشق للعلوم الأساسية مجلد 40- عدد 2 (2024): 1-12

Damascus University Journal for the Basic Sciences Vol 40 No.1 (2024): 1 -12

تأثير التشعيع بالنترونات على الخصائص الكهربائية لترانزستورات الموسفت

 1 عهد مازن حلاق 1 د. جمال الدین أحمد عساف 2 د. إياد أنيس مدور

طالبة ماجستير في قسم الفيزياء جامعة دمشق <u>ahed.mazen58@damascusuniversity.edu.sy</u> مدير بحوث في هيئة الطاقة الذريّة السّوريّة jassaf@aec.org.sy

أستاذ مساعد في قسم الفيزياء -كلية العلوم - جامعة دمشق iad.mdawar@damascusunevesity.edu.sy

الملخص

جرى في هذا البحث دراسة تأثير الإشعاع النتروني على عينات متماثلة من ترانزستور موسفت بنوعيه N-MOSFET و P-MOSFET وذلك بإخضاعها لتدفق نتروني يساوي 2.81×2.89 بنوعيه N-MOSFET و وذلك بإخضاعها لتدفق نتروني يساوي 2.01×2.89 ⁻¹ داخل إحدى قنوات التشعيع في مفاعل منسر السوري، وبأزمنة تشعيع تتراوح بين ¹⁰ sec ¹⁰ داخل إحدى قنوات التشعيع في مفاعل منسر السوري، وبأزمنة تشعيع تتراوح بين على sec (10 to 400) sec ولك بإحدا الترانزستور الكهربائية والإلكترونية ورصد التغيرات فيها قبل وبعد التشعيع وخاصة منحنيات الخواص المميزة I_{DS}-V_{GS} وكمون العتبة. بينت النتائج تغير في منحنيات الخواص الذي تَمثَّل بانزياح كمون العتبة عن قيمته الأساسية مع زيادة زمن التشعيع وصولاً إلى حالة انهيار الترانزستور عند زمن sec .400 sec .400 مقارنة مفصلة لتأثير الإشعاع على النوعين المدروسين.

تاريخ الإيداع: 2022/10/03 تاريخ الموافقة: 2022/11/15

حقوق النشر : جامعة دمشق – سورية، يحتفظ المؤلفون بحقوق النشر بموجب الترخيص CC BY-NC-SA 04

الكلمات المفتاحية: موسفت، التشعيع، النترونات، كمون العتبة، زوج فرنكل، التخريب الإشعاعي.

The effect of neutron irradiation on the electrical properties of Mosfet transistors

Hed Mazen Hallak¹ Jamal-Eddin Ahmad Assaf² Iad Anes Mdawar³ ¹Master student, Damascus University, Physics Department Syria

ahed.mazen58@damascusuniversity.edu.sy

²Research Manager Atomic Energy Commission of Syria <u>jassaf@aec.org.sy</u> ³Assistant Professor in Physics Department Faculty of Science- Damascus university <u>iad.mdawar@damascusunevesity.edu.sy</u>

Abstract

the effect of neutron radiation on identical samples of MOSFET transistors N-MOSFET and P-MOSFET was studied by subjecting them to a neutron flux equal to 2.89×10^{11} cm⁻²·sec⁻¹ inside one of the irradiation channels in the Syrian MNSR reactor, and with the times of Irradiation ranging between (10 to 400) sec to test electrical and electronic transistor specifications and monitor changes in them before and after irradiation, especially I_{DS}-V_{GS} characteristic curves and threshold potential. The results showed a change in characteristic curves, which was represented by shifting of the threshold potential from its basic value with the increase of the irradiation time to the state of the breakdown of the transistor at a time of 400 sec. Within this framework, a detailed comparison was made of the effect of radiation on the two studied types.

Keywords : Mosfet, Irradiation, Neutrons, Threshold potential, Frankel pair, Radiation damage.

Received :2022/10/03 Accepted:2022/11/15

Copyright:Damascus University- Syria, The authors retain the copyright under a CC BY- NC-SA

1. مقدمة

يؤدي تعرُض التجهيزات الإلكترونية إلى الإشعاع النووي عند استخدامها في الفضاء أو بالقرب من المفاعلات والمسرعات إلى إحداث أضرار وعيوب (damages) في تركيبتها وحصول أعطال في أداء وعمل العناصر المكونة لها [1,2]. إن معرفة تأثير الاشعاع النووي عليها يعطي معلومات مفيدة في التعامل معها وفي تصميم أنوع وأجيال أكثر مقاومة لهذا التأثير. إن أحد الأسباب الرئيسة لتخريب العناصر الإلكترونية بالإشعاع ينجم عن تعرضها للنترونات ويمكن تلخيص التأثير الرئيسي للنترونات بأنها تتصادم مع الفرية النصف الناقل وتزيح الذرات من مكانها الأساسي مما يتسبب في تقطع أو تحطم هذه الشبكة وتخريب مواصفاتها [3].

تُستخدم ترانزستورات موسفت على نطاق واسع في تركيبة الدارات الالكترونية الرقمية مثل الذواكر والمعالجات الحاسوبية، أيضا في صناعة مقاييس الجرعة الإشعاعية (RADFETs) [4,5]. تتكون بنية ترانزستور التأثير الحقلي (الموسفت) من طبقة من المعدن تمثل القطب الأول وهو البوابة (Gate) متوضعة على طبقة من مادة عازلة وهي غالباً ثنائي أكسيد السيلكون (SiO₂) وهي بدورها متوضعة على ركيزة (substrate) من السيلكون والتي تشكل الجسم الأساسي للترانزستور . يتوضع عند طرفي الركيزة منطقتين من نصف ناقل معاكستين لها بالنمط (type) تمثلان القطبين الثاني والثالث للترانزستور وهما المنبع (Source) والمصب (Drain). يتلخص عمل الموسفت بنشوء حقل كهربائي ضمن مادة الاكسيد يتسبب بفتح قناة (Channel) لمرور التيار بين المنبع والمصرف، حيث يتم التحكم به من خلال الكمون المطبق على البوابة الذي ينتج هذا الحقل (آ

يتم تفاعل الاشعاع النووي النتروني مع الموسفت عبر آليتي الانزياح الذري والتأيين والذي يتعلق بطاقة الاشعاع وتركيبة الترنزستور [2,7,8,9]. يرافق التعرض للنترونات الصادرة عن المفاعلات تعرضاً لأشعة غاما الناتجة عن الانشطار النووي داخل المفاعل[10,11]. بالنسبة لتفاعل التأين في الموسفت فيتم حسب النموذج المرتكز على تمثيل سويات الطاقة [2,13] والمبين في الشكل1. يعطي تفاعل أشعة غاما مع أكسيد السيلكون أزواج إلكترون-ثقب يتناسب عددها مع طاقة الإشعاع، حيث تتحرك الالكترونات السريعة وتخرج من منطقة الأكسيد باتجاه البوابة، بينما يتعرض قسم من الثقوب بطيئة الحركة (وهو الأقل) إلى عملية إعادة اتحاد في موقعها الأولي. تتجه بقية الثقوب إلى الحد الفاصل SiO₂/Si على شكل قفزات ضمن سويات طاقية معينة ناجمة إما عن عيوب ذاتية أولية أو عن تأثير الإشعاع نفسه وتسمى حالات موضعية (localized states) [14].

يتحد جزء من الثقوب مع جزيئات SiO₂ ذات بنية خاصة غير متبلورة تشكل عيوب تسمى شحنات الأكسيد الموجبة المأسورة Oxide Trapped Charges, POTCs) (Si dangling bonds ويُرمز لها بـ *Qporc و*أما الجزء الأخير من الثقوب فيتفاعل مع ذرات الهيدروجين والسيليكون منقوصة الروابط معطية في النهاية جزيئات سيلكون منقوصة الروابط (Si dangling bonds) تتواجد في منطقة التماس وتسمى الشحنات البينية المأسورة (Interface Trapped Charges, ITCs) ويُرمز لها *م*روجبة الموجبة الماسورة على مع ذرات الهيدروجين والسيليكون في النوع P وسالبة في النوع N للموسفت [13].

الشكل 1: نموذج مستويات الطاقة في بينة الموسفت التي توضح مراحل تأثير الإشعاع المؤين وأماكن توضع الشحنات الناجمة عن هذا التأثير[13]

أما عملية الانزياح الذري فتحصل عند اصطدام جسيم مع ذرات المادة وخاصة مع النواة مما يؤدي إلى انزياح الذرة كاملة من موقعها الأساسي تاركة مكانها فراغاً (فجوة) ((V)-Vacancy) في الشبكة البلورية ويطلق على المكان الذي انزاحت إليه الذرة ب التوضع البيني (حشوة) ((I)-Interstitial) [12]. يؤدي الانزياح الذري إلى توليد عيوب نقطية على شكل أزواج (V-I) من ذرات السيلكون والأكسجين في تركيبة الموسفت وتسمى أزواج فرنكل، وهي تعمل كمصائد (traps) لحاملات الشحنة المقلية الثقوب) [5,13].

تسبب النترونات إذاً تأثيراً مضاعفاً ضمن بنية الموسفت بسبب قدرتها على احداث عيوب فرنكل الناجمة عن الانزياح الذري بشكل رئيسي، وبشكل ثانوي العيوب المتشكلة بسبب التأين.

2. مواد وطرائق البحث

أولاً. العينات المستخدمة ودارة قياس منحنيات الخواص المميزة IDS-VGs

استخدم في هذا العمل 18 عينة ترانزستور Power MOSFET تجارية، 9 عينات متماثلة من النوع N و9 عينات متماثلة من النوع P ذات الأسماء التجارية IRF540N وIRF9540N على التوالي.

يبين الشكل 2 الدارة الكهربائية المستخدمة لدراسة ورسم منحنيات الخواص IDS-VGS، حيث يطبق كمونا انحياز من وحدتي تغذية مستمرة (DC Voltage power supply)، أولهما الكمون VDD ويطبق بين المنبع والمصرف وتكون قيمته ثابتة، والثاني VGG متغير ويطبق بين البوابة والمنبع. يوصل قطب المنبع إلى النقطة المشتركة (المرجعية) في الدارة، ينشأ نتيجة ذلك فروق كمون بين المنبع والمصرف VDs وبين المنبع والبوابة VGS ويمر تيار بين المصرف والمنبع دالم. يتم تسجيل قيم التيار وفروقات الكمون بواسطة مقاييس تيار وكمون. يبين الشكل 3 التجهيزات السابقة المستخدمة في هذه الدارة.

الشكل 2: التجهيزات المستخدمة في البحث

ثانياً. قياس كمون العتبة V_T

يساوي هذا الكمون كمون البوابة V_{GS} اللازم لتشكل القناة كاملة ومرور تيار I_{DS} فيها من مرتبة ميكرو أمبير، وذلك بعد الانتقال إلى مرحلة الانقلاب القوي لحاملات الشحنة داخل القناة حيث يعمل الترانزستور بشكل عادي ومستقر. باعتبار كمون العتبة هو أحد المحددات الهامة في الترانزستور، فقد اقتُرحت عدة طرق لقياسه، وكانت هذه الطرق موضوع عدد كبير من الدراسات والأبحاث [5,16]. من هذه الهامة في الترانزستور، فقد اقتُرحت عدة طرق لقياسه، وكانت هذه الطرق موضوع عدد كبير من الدراسات والأبحاث [5,16]. من هذه الطرق البسيطة والأكثر استخدام طريقة الاستقراء الخطي للتيار I_{DS} المرق موضوع عدد كبير من الدراسات والأبحاث [5,16]. من هذه الطرق البسيطة والأكثر استخدام طريقة الاستقراء الخطي للتيار I_{DS} الحرى الحالي من الدراسات والأبحاث [5,16]. من هذه يمكن تقريبها وتلخيصها بأنها قيمة تقاطع المستقيم الماس للمنطقة الخطية للمنحني I_{DS} مع المحور V_{GS} كما هو موضح في الشكل على تقريبها وتلخيصها بأنها قيمة تقاطع المستقيم الماس للمنطقة الخطية للمنحني I_{DS} مع المحور V_{GS} كما هو موضح في الشكل ويكثر تقريبها وتلخيصها بأنها قيمة تقاطع المستقيم الماس للمنطقة الخطية للمنحني I_{DS} مع المحور V_{GS} كما هو موضح في الشكل ويمكن تقريبها وتلخيصها بأنها قيمة تقاطع المستقيم الماس للمنطقة الخطية للمنحني V_{GS} مع المحور V_{GS} كما هو موضح في الشكل ويساوي تقريبا و تلاحية النها قيمة تقاطع المستقيم الماس للمنطقة الخطية للمنحني ويعده وفق المحور V_{GS} كما هو موضح في الشكل التشعيع وبعده وفق العلاقة التالية: V_{T} = V_{T}

الشكل 3: مخطط تقدير كمون العتبة بطريقة الاستقراء الخطي للتيار IDs

النتائج التجريبية ومناقشتها

أولاً. قياس كمون العتبة الابتدائي لعينات الموسفت قبل التشعيع

جرى قياس كمون العتبة الابتدائي V_{TO} للعينات جميعها قبل التشعيع عند قيمة ثابتة لـ V_{DS}، ويبين الجدول 1 مجال تغير القيم المقاسة للعينات والقيم المتوسطة وقيمة الارتياب في حساب كمون العتبة.

Туре	عدد العينات	V_{DS} (V)	$V_{T0}(V)$	$\overline{V_{T0}}(V)$	$\Delta V_{T}\left(V ight)$
N-MOSFET	9	0.247	(2.695 to 2.787)	2.731	0.10005
P-MOSFET	9	0.210	(-3.295 to -3.12)	-3.231	0.10005

الجدول 1: قيم كمون العتبة الابتدائية لنوعى الموسفت

طُبقت كمونات سالبة في دارة النوع P لذلك تكون قيم الكمون سالبة كما يبين الجدول 1، بينما تكون موجبة في النوع N.

إن لعينات كل نوع قيم متقاربة جدا كونها من نفس الشركة المصنعة وتمتلك نفس الرقم، فتعد كعينة واحدة يُدرس تأثير التشعيع بالنترونات عليها خلال أزمنة مختلفة.

ثانياً. تشعيع العينات

تم ترقيم العينات بترتيب خاص يقابل كل منها قيمة محددة لزمن التشعيع وتوضع في عبوات بلاستيكية خاصة للتشعيع (الشكل 3). جرى تشعيع العينات السابقة بالنترونات داخل إحدى قنوات التشعيع بمفاعل البحث منسر [17] بزمن تشعيع t_{irr} مقدراً بالثانية. حيث تتناسب الجرعات النترونية والغماوية التي تتلقاها العناصر المشععة مع هذا الزمن، وبجرعات مفردة أي كل عينة تُشعع مرة واحدة. ثالثاً. نتائج عملية التشعيع النتروني

جرى تقييم أثر التشعيع برسم ومقارنة منحنيات الخواص IDs-VGs لكل عينة واستنتاج قيمة كمون العتبة VT المقابل لكل زمن تشعيع كما يلي:

I.عينات P-MOSFET المشععة بالنترونات

الشكل 4: المنحنيات المميزة Ibs-VGs لأربعة عينات من النوع P-MOSFET شُععت داخل المفاعل خلال أزمنة مختلفة مبينة على كل شكل

يبين الجدول 2 قيم كمون العتبة بعد التشعيع لتسعة عينات مقابل كل زمن تشعيع وقيمة الارتياب في حساب هذا المقدار . كما يبين الشكل 5 المنحنيات المقاسة IDS-VGS لأربع عينات مشععة بأزمنة التشعيع المبينة على كل منحني.

		•			
$V_{T0} = -3.231 V$					
كمون العتبة بعد التشعيع (V J ر	زمن التشعيع بالنترونات (t _{irr} (sec	العينة			
-3.395	10	P-1			
-3.795	25	P-2			
-4.095	50	P-3			
-4.395	75	P-4			
-4.595	100	P-5			
-4.895	150	P-6			
-5.0165	200	P-7			
-5,539	300	P-8			
_	400	P-9			
$\Delta V_T = 0.10005 \ V$					

الجدول 2: قيم كمون العتبة بعد تشعيع عينات P-MOSFET بأزمنة التشعيع المبينة

يتبين من هذه النتائج أن زيادة زمن التشعيع يزيد المسافة بين منحنيات $I_{DS}-V_{GS}$ وتنزاح إلى يمين منحني قبل التشعيع (0 sec)، كما تزداد $\Delta V_T = -2.33 \text{ V}$ القيمة المطلقة لكمون العتبة من قيمة V 3.231 قبل التشعيع إلى $V_{CS} = -2.33 \text{ V}$ وتنزاح إلى يمين منحني قبل التشعيع (0 sec)، كما تزداد القيمة المطلقة لكمون العتبة من قيمة V 3.231 قبل التشعيع إلى 2.53 مند زمن 300 sec أي تتغير قيمته بمقدار $V_T = -2.33 \text{ V}$ القيمة المطلقة لكمون العتبة من قيمة V 3.231 قبل التشعيع إلى 2.55 مند زمن sec في تنفير قيمته بمقدار V 3.25 وينا القيمة المطلقة لكمون العتبة من قيمة V 3.231 قبل التشعيع إلى 2.55 مند زمن sec في تنفير قيمته بمقدار V 3.25 وينا القيمة المطلقة لكمون العتبة من قيمة V 3.231 قبل التشعيع إلى 2.35 من قبل التشعيع إلى 2.350 قبل التشعيع المساوي لـ 400 sec من قبل العنبة. ونا حصل عند زمن التشعيع المساوي لـ 400 sec من عنه العينة. ونا حصل عند زمن التشعيع المساوي الملود وهذا ما حصل عند زمن التشعيع المساوي العنون التشعيع في العينة. ونا حمل عند زمن التشعيع المساوي الملود وهذا ما حصل عند زمن التشعيع المساوي الملود ويا التشعيع العينة. ونا حمل عند زمن التشعيع المساوي الملود ولاح في العينة. حرى رسم المنحني البياني الذي يمثل كمون العتبة كتابع لزمن التشعيع –اعتماداً على معطيات الجدول 2– كما هو مبين في الشكل 6.

الشكل 5: منحني تغيرات كمون العتبة بدلالة تغير زمن التشعيع داخل المفاعل للنوع P-MOSFET

تُلاحظ زيادة القيمة المطلقة للكمون مع زيادة زمن التشعيع، وتأخذ منحى غير خطي على كامل المجال. تنخفض وتيرة التغير في كمون العتبة ضمن المجال عمي (يادة القيمة المطلقة للكمون مع زيادة زمن التشعيع قبل انهيار العنصر كما هو موضح في الشكل . من أجل معرفة السلوك الكلي بدقة، جرت عملية المواءمة للمنحني حيث تبين أن علاقة تغير كمون العتبة بدلالة زمن التشعيع في . 6. من أجل معرفة السلوك الكلي بدقة، جرت عملية المواءمة للمنحني حيث تبين أن علاقة تغير كمون العتبة بدلالة زمن التشعيع في المحال . من أجل معرفة السلوك الكلي بدقة، جرت عملية المواءمة للمنحني حيث تبين أن علاقة تغير كمون العتبة بدلالة زمن التشعيع في المجال الكلي المدروس تكون كما يلي $-V_T = at_{in}^b$.

II. عينات N-MOSFET المشععة بالنترونات

الشكل 6: المنحنيات المميزة IDS-VGS لأربعة عينات من النوع N-MOSFET شععت داخل المفاعل خلال أزمنة مختلفة مبينة على كل شكل

بشكل مشابه، دُرس تأثير الإشعاع النتروني على تسع عينات من النوع N، حيث. يبين الجدول 3 قيم كمون العتبة بعد التشعيع للعينات المدروسة والارتياب فيه. يبين الشكل 7 منحنيات IDs-VGS لأربعة عينات مشععة بأزمنة التشعيع المبينة على كل منحني منها

V _{T0} = 2.731 V					
كمون العتبة بعد التشعيع V _T (V)	زمن التشعيع بالنترونات t _{irr} (sec)	العينة			
2.36	10	N-1			
1.92	25	N-2			
1.58	50	N-3			
1.12	75	N-4			
0.93	100	N-5			
0.68	150	N-6			
0.54	200	N-7			
0.33	300	N-8			
-	400	N-9			
$\Delta V_T = 0.10005 \ V$					

الجدول 3: قيم كمون العتبة بعد تشعيع عينات N-MOSFET بأزمنة التشعيع المبينة

تبين من هذه النتائج أن زيادة زمن التشعيع يزيد المسافة بين منحنيات $I_{DS}-V_{GS}$ وتنزاح إلى يسار منحني قبل التشعيع (0 sec) باتجاه الصفر ، كما تنخفض قيمة كمون العتبة من V 2.731 قبل التشعيع إلىV 0.33 بعد التشعيع عند زمن 300 sec أي تتغير قيمته بمقدار $\Delta V_T = -2.4$ V. ونلاحظ كذلك أنه باستمرار التشعيع يتخرب الترانزستور وهذا ما حدث عند زمن التشعيع المساوي لـ 400 sec. رئيمت تغيرات قيم كمون العتبة بدلالة زمن التشعيع على معطيات الجدول 3–كما هو مبين في منحني الشكل 8.

الشكل 7: منحنى تغيرات كمون العتبة بدلالة زمن التشعيع داخل المفاعل للنوع N-MOSFET

يُلاحظ انخفاض قيمة الكمون بشكل غير خطي عموماً حتى يصل لحالة انهيار. تتخفض وتيرة التغير في كمون العتبة ضمن المجال sec (150 to 300) أي يتجه نحو الإشباع مع زيادة زمن التشعيع قبل انهيار العنصر، وبإجراء عملية مواءمة للمنحنى يتبين أن علاقة تغير كمون العتبة بزمن التشعيع ممكن أن تكون كما يلي ضمن المجال الكلي المدروس: $V_T = aLn(t_{irr}) + b$ ومعامل الارتباط لمجموعة النقاط يساوي $R^2 = 0.9877$

4. مناقشة النتائج

يمكن تلخيص ومناقشة النتائج السابقة عبر النقاط التالية:

- في كلا النمطين ينزاح كمون العتبة عن القيمة الأصلية قبل التشعيع V_{T0} مع زيادة زمن التشعيع (الجرعة الإشعاعية)، ويتناسب مقدار هذا الانزياح طرداً مع هذا الزمن. يمكن تفسير الاقتراب من حالة الإشباع قبل الانهيار في الحالات السابقة، لتوقف ازدياد العيوب المتشكلة نتيجة التشعيع، وهي نتيجة محدودية مساكة العيوب في الأكسيد والسطح البيني نتيجة محدودية سماكة طبقة الأكسيد، نتائج متشابهة كيفياً ذُكرت في عدة مراجع ومنها [12,14].
- QPOTC الناجمتين عن تشكل الشحنات VT(ITC) و VT(ITC) الناجمتين عن تشكل الشحنات QPOTC
 ينجم تغير كمون العتبة بعد التشعيع من مساهمة مركبتين له وهما (VT(ITC) و VT(POTC) الناجمتين عن تشكل الشحنات QPOTC
 و QITC ، حيث تتغير مساهمتهما في كمون العتبة الكلي حسب النمط المدروس.
- في النوع P تكون قطبيتي هاتين المركبتين سالبة مثل قطبية كمون العتبة قبل التشعيع، وبالتالي يكون كمون العتبة الكلي سالب دوماً، أي أن تأثير هذه الشحنات على كمون العتبة تراكمي أو جمعي كما تبين العلاقة (1):

$$V_{T} = -V_{T0} - V_{T(POTC)} - V_{T(TC)}$$
(1)

حيث يضاف تأثيرهما لبعضهما، ولذلك كلما زادت الجرعة زادت كميتي هذه الشحنات ووجب تطبيق كمون V_{GS} أكبر بالقيمة المطلقة (أو أكثر سلبية ككمون انحياز) لفتح القناة وتحقيق الانقلاب. إن زيادة قيمة كمون العتبة بعد التشعيع يدل على أن تأثير الشحنات المتحرضة يعاكس تأثير عملية انقلاب الشحنات اللازمة لمرور التيار وفتح القناة.

أما في حالة النوع N، تكون قطبية كمون العتبة قبل التشعيع V_{T0} موجبة، يضاف إليها مركبتي بعد التشعيع وهما: المركبة السالبة (V_{T(POTC}) والمركبة الموجبة (V_{T(ITC}) فتتغير قيمة وإشارة كمون العتبة الكلي حسب مساهمة كل نوع من هذه الشحنات، أي أن تأثيرهما على كمون العتبة مختلف أو تفاضلي كما تبين العلاقة (2) :

$$V_{T} = V_{T0} - V_{T(POTC)} + V_{T(ITC)}$$
(2)

في البداية، يكون كمون العتبة موجباً قبل التشعيع، وبينت النتائج التجريبية أن قيمته تتناقص بزيادة الجرعة مع بقائه موجباً (حتى جرعة معينة)، وهذ يدل على أن المركبة السالبة V_{T(POTC} هي المسيطرة وهي تزداد مع زيادة الجرعة. أي أن قطبية كمون العتبة بعد التشعيع ليست ثابتة وإنما تتغير في الحالة العامة من الموجبة ثم الصغر وقد تصبح سالبة. إذاً كلما زادت الجرعة كلما انخفضت قيمة كمون العتبة بعد التشعيم ليست ثابتة وإنما تتغير في الحالة العامة من الموجبة ثم الصغر وقد تصبح سالبة. إذاً كلما زادت الجرعة كلما انخفضت قيمة كمون العتبة بعد التشعيم ليست ثابتة وإنما تتغير في الحالة العامة من الموجبة ثم الصغر وقد تصبح سالبة. إذاً كلما زادت الجرعة كلما انخفضت قيمة كمون العتبة بعد التشعيم باتمه أبي أن الترانزستور عند جرعة معينة قد يصبح في حالة توصيل دائم. ويمكن تفسير ذلك، على أن نقصان قيمة كمون العتبة العامة من الموجبة ثم الصغر وقد تصبح سالبة. إذاً كلما زادت الجرعة كلما انخفضت الموجبة ثم الصغر وقد تصبح سالبة. إذاً كلما زادت الجرعة كلما انخفضت قيمة كمون العتبة التحمر أي أن الترانزستور عند جرعة معينة قد يصبح في حالة توصيل دائم. ويمكن تفسير ذلك، على أن نقصان قيمة كمون العتبة بعد التشعيع يدل على أن تأثير الشحنات المتحرضة يوافق التأثير الذي يؤدي إلى عملية انقلاب الشحنات اللازمة لمرور التيار وفتح القناة، وهو عكس تأثيرها في النوع P كما بينا في الفقرة السابعة.

5. الخلاصة

جرى في هذا البحث تشعيع ترانزستور الموسفت بنوعيه N و P بتدفق نتروني مساوٍ لـ 2.89x10¹¹ cm⁻².sec⁻¹ خلال أزمنة تتراوح بين 2.89x10¹¹ cm⁻².sec الموسفت بنوعيه N و P بتدفق نتروني مساوٍ لـ 10to 400)، واستُخدمت طريقة الاستقراء الخطي لتحديد قيمة كمون العتبة حيث تم التأكد أن جميع عينات النوع الواحد تمتلك نفس القيمة تقريبا. جرى رسم المنحنيات المميزة الاستقراء الخطي لتحديد قيمة كمون العتبة حيث تم التأكد أن جميع عينات النوع الواحد تمتلك نفس القيمة تقريبا. جرى رسم المنحنيات المميزة المحالي التعديد قيمة كمون العتبة حيث تم التأكد أن جميع عينات النوع الواحد تمتلك نفس القيمة تقريبا. جرى رسم المنحنيات المميزة المحالي العد التشعيع، وتبين أنه بالنسبة للنوع P يؤدي التشعيع النتروني إلى زيادة القيمة المطلقة لكمون العتبة أي تطلب تطبيق كمون سالب أعلى على البوابة V_{GG} في دارة القياس، وبرسم منحني تغيرات V_T كتابع لزمن المطلقة لكمون العتبة، أي نطلب تطبيق تأحذ شكل تابع قوة ، أما بالنسبة للنوع N يؤدي التشعيع النتروني إلى انخفاض قيمة كمون العتبة،

أي تطلب تطبيق كمون موجب أخفض على البوابة V_{GG} في دارة القياس، وتتغير قيمة V_T بشكل لوغاريتمي مع زيادة زمن التشعيع النتروني. يفقد نوعا الموسفت خواصهما الكهربائية عند زمن تدفق نتروني 400 sec، حيث ينعدم التيار I_{DS} فيها. تم تفسير هذه النتائج بالاعتماد على الدراسة النظرية المعتمدة على آلية تفاعل الإشعاع النتروني مع بنية الموسفت التي تؤدي لتفاعل نووي أولي مشكلاً عيوب فرنكل ضمن طبقة الأكسيد وتفاعل ثانوي منتجاً لأزواج الكترون – ثقب مما يؤدي لتكون شحنات من النوعين 707 و 71 ضمن طبقة أكسيد السيليكون، مسببا حقول كهربائية داخلية تؤدي لانزياح كمون العتبة بشكل يتناسب مع زمن التشعيع

6. المراجع:

- [1] Duzellier S., Radiation effects on electronic devices in space, Aerospace Science and Technology, Volume 9, Issue 1, Pages 93-99., (2005).
- [2] Farrroh H. A, et. al, A study of the performance of an N –Channel MOSFET under Gamma radiation as a dosimeter, Journal of Electronic Materials, 49, pages 5762–5772, (2020).
- [3] Haider F. et al., Neutron radiation effects on metal oxide semiconductor (MOS) devices, Nuclear Instruments and Methods in Physics Research B, 267(18), (2009).
- [4] Ibrahim R., Studying the operation of MOSFET RC-phase shift oscillator under different environmental conditions, Nuclear Engineering and Technology 52, (2020).
- [5] Pejovic Milic M., et al., Application of p-channel power VDMOSFET as a high radiation doses Sensor, IEEE Trans. Nucl. Sci, Vol. 62, NO. 4, (2015).
- [6] Paul R. Gray and Robert G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons Inc., (2009).
- [7] Kerdpradist A. et. al, The Effect of Gamma Irradiation on Threshold Voltage and Channel Mobility Degradation of NMOS, International Electrical Engineering Congress, pp. 1-4, doi: 10.1109/IEECON.2018.8712257. Publisher: IEEE, (2018).
- [8] Vukic V.and Osmokrovic P., Total ionizing dose response of commercial process for synthesis of linear bipolar integrated circuits, Journal of Optoelectronics and devices materials, Vol. 8, No. 4, 1538 1544, (2006).
- [9] Assaf J., Bulk and surface damages in complementary BJTs produced by high dose irradiation, Chin. Phys. B Vol. 27, No. 1, 016103 1-8, (2018).
- [10] Wang C. et al., The impact of reactor neutron irradiation on total ionizing dose degradation in MOSFET, NIMA 924, (2018).
- [11] Assaf J., Shweikani R. and Ghazi N., Radiation effect on Silicon transistors in mixed neutrons-gamma environment, Radiation Physics and Chemistry, Vol. 103, (2014).
- [12] Geoffrey P. et al., Displacement damage analogs to ionization radiation effects, Radiation Measurements Vol. 24, No. 1 (1995).
- [13] Schwank R. et al., Radiation effect in MOS oxides, IEEE Trans. Nucl. Sci, Vol. 55, NO. 4, (2008).
- [14] Galloway K.F. et al, MOS device degradation due to total dose ionizing radiation in the natural space environment: A review, Microelectronics Journal, Volume 21, Issue 2, Pages 67-81, (1990).
- [15] Osmar Franca Siebel, et al, MOSFET threshold voltage: Definition, extraction, and some applications, Microelectronics Journal 43, pp 329–336, (2012).
- [16] Adelmo Ortiz-Conde, et al, Revisiting MOSFET threshold voltage extraction methods, Microelectronics Reliability 53, pp 90–104, (2013).
- [17] Khattab K et al, A group of Neutronic calculations in the MNSR using the MCNP-4C code, November (2009).