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 :الملخص

(  (Tree-select Trial and Error" TTEنعرض في هذا البحث خوارزمية جديدة نسميها
والتي يمكن أن تساعد الذذرا  الليذة التذي تت ذمن فا  ذية علذق التذ الم مذ  اتعطذال التذي اذد 
تحذذدث أانذذذاه عملهذذا. تقتذذذرا هذذذ  الخوارزميذذذة اسذذذتراتيجية بحذذث جديذذذدة تسذذم  للروبذذذو  بتوليذذذد 
سذذلوكيا  جديذذدة، بذذدال مذذن التقيذذد بالسذذلوكيا  التذذي تذذم تعلمهذذا سذذابقال مذذن أجذذل تعذذويض  اذذار 

التذذالي، أحذذب  تعلذذم السذذلوكيا  المناسذذبة عمليذذة مسذذتمرة تعذذزز معذذار  الروبذذو . ال ذذرر. وب
أابتذذذ  المحاكذذذاة والنتذذذا ي التجريبيذذذة علذذذق ذرا  مسذذذتوة بسذذذ  محركذذذا  فعاليذذذة خوارزميتنذذذا فذذذي 
مسذذذاعدة الروبذذذو  علذذذق الوحذذذول إلذذذق مسذذذاحة كبيذذذرة مذذذن مسذذذاحة عملذذذ  فذذذي عذذذدد اليذذذل مذذذن 

 اتعطال المختلفة. المحاوا  علق الرغم من سيناريوها  
 

  .الت الم م  اتعطال، المحاولة والخط ، الروبوتيك، اتذر  اللية :الكلمات المفتاحية

  

 29/8/2023تاريخ الإيدا :

 24/10/2023تاريخ القبول:

 
سورية، –حقوق النشر: جامعة دمشق 

يحتفظ المؤلفون بحقوق النشر بموجب 
 CC BY-NC-SA 04 الترخيص 

http://journal.damascusuniversity.edu.sy/


Tree-select Trial and Error Algorithm for Adaptation                            DEEB, ALBADIN,  Dr. ALBITAR 
 

 7من  2

 

Tree-select Trial and Error Algorithm for Adaptation to Failures of 

Redundant Manipulators 
 

 

 Ali DEEB
1
, Ahed ALBADIN

2*
, Dr. Chadi ALBITAR

3 

 
1 
Higher Institute for Applied Sciences and Technology, Engineer, Electronic 

Systems, Email: ali.abddeeb@hiast.edu.sy  
2
 Higher Institute for Applied Sciences and Technology, Engineer, Control 

and Robotics, Email: ahed.albadin@hiast.edu.sy 
3
 Higher Institute for Applied Sciences and Technology, Assistant Professor 

vision and robotics, Email: shadi.albitar@hiast.edu.sy 

 

Abstract 
In this paper, we introduce a novel algorithm we call "Tree-select Trial 

and Error" (TTE) that can help a redundant robotic arm to adapt to failures 

that might occur during its functioning. This algorithm proposes a new 

search strategy allowing the robot to generate new behaviours, rather than 

being restricted to the previously learned ones, in order to compensate 

damage effects. Thus, learning suitable behaviours become an online process 

that promotes the robot's knowledge. The simulation and the experimental 

results on a planar manipulator with six actuators proved the effectiveness of 

our algorithm in helping the robot to reach a large area of its workspace in a 

few number of trials despite the different damage scenarios. 
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1. Introduction 
Robots are physical systems equipped with 

actuators permitting sufficient degrees of 

freedom to perform desirable tasks within 

certain environments. Like any physical system, 

damages can occur badly causing serious 

challenges with common fragile robots 

(Sanderson, 2010), (Carlson & Murphy, 2005), 

especially when the tasks are performed outside 

the laboratories, or when human interference is 

not a valid option. 

Traditional damage recovery strategies 

involved two main phases; fault diagnosis 

followed by selecting the most promising pre-

specified solution (Blanke, et al., 2006). Such 

self-diagnosing robots were expensive because 

of the high price sensors and design complexity. 

However, it is difficult to foresee all possible 

damage scenarios.  

Recently, these challenges were tackled by 

adaptation to failure, skipping the phase of fault 

diagnosis through trial and error (Cully, et al., 

2015), (Koos, et al., 2013), and (Ren, et al., 

2015). As a result, damage recovery has become 

a Reinforcement Learning (RL) problem in 

which the robot needs to maximize a certain 

reward function consulting the best action in 

each state despite the damage (Kober, et al., 

2013). Traditional RL methods learn to choose 

the best action from each state (Sutton, et al., 

1998), (Mnih, et al., 2015).  

Thus, RL algorithms rely mostly on policies, 

rather than value functions, to estimate the 

parameters that lead to better actions. These 

methods were used for dynamic movement 

primitives (Ijspeert, et al., 2002) and general-

purpose neural networks in robotics field 

(Levine & Koltun, 2013). Direct policy search 

adopts algorithms that learn through 

optimization problems using gradient-based or 

black-box optimization algorithms (Stulp & 

Sigaud, 2013). However, these algorithms 

encountered difficulties due to the high-

dimensionality of search spaces (Deisenroth, et al., 

2013). Model-based policy search algorithms 

tend to differentiate between learning a model 

of the robot and learning a proper policy 

concerning the learned model (Deisenroth, et al., 

2013) (Chatzilygeroudis, et al., 2017). Another 

adaptation to damage algorithm (DA-PPO) was 

proposed combining damage diagnosis with 

deep reinforcement learning (Verma, et al., 

2020). It used Long Short Term Memory based 

supervised learning network to diagnose the damage, 

and predict the best action through a single shot.  

The former algorithms were proved to be very data-

sufficient, since they require fewer trials to learn 

policies. Adaptation in dynamic real-world 

environments was achieved in recent researches through 

meta-reinforcement learning (Nagabandi, et al., 2019). 

However, the complexity of dynamics scales 

exponentially with the number of components moving 

as large number of observations were required from the 

real system to learn a useful model. Mitigating this 

limitation was achieved by FAMLE algorithm 

(Kaushik, et al., 2020) that meta-trained several initial 

starting points  allowing the robot to select the most 

promising starting point to adapt to the current 

situation.  

Intelligent Trial and Error (IT&E) algorithm was 

proposed in (Cully, et al., 2015), and permitted a 

robotic manipulator, as well as a hexapod robot, to 

perform well in cases of some damages. It is consisted 

of two main phases; building a behaviour-performance 

map, followed by searching only within the previously 

stored behaviours in cases of damage. The last phase 

made the adaptation to failure restricted to what the 

robot has previously learned and stored in the map, 

unable to learn new behaviours. In (Kume, et al., 

2017), MMPRL algorithm allowed storing behaviours 

more efficiently. However, the adaptation process were 

strictly held by the stored behaviours solely. Besides, 

after each trial, the robot needed to be reset to the 

initial state. This problem was solved by RTE 

algorithm (Chatzilygeroudis, et al., 2018), which did 

not need any reset between episodes  and scaled well 

with respect to the dimensionality of state-action 

spaces, which made it suitable for complex robots, as it 

takes into account the environment changes. RTE 

proved to make a break through the adaptation to 

failure algorithms for robots and it was tested on a six-

legged walking robot and made it able to recover most 

of its locomotion abilities in an environment with 

obstacles without any human intervention. However, 

RTE is applicable when the model of the robot is 

defined under the form of states and transitions. 

Furthermore, APROL algorithm was proposed 

recently allowing redundant robots to enlarge their 

behaviour repertoire by allowing the simulation model 

to generate repertoires for many different situations 

concerning damaged cases (Kaushik, et al., 2020). So, 

the robot extends its learning phase and starts learning 

to face some damage scenarios before they happen. 

This modification resulted in faster adaptation for a 

damaged hexapod robot.  
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Recently, Albadin, et al., ensured the 

effeciency of the methods that does not rely on 

diagnosing the failure (Albadin, et al., 2022) by 

developping the (IT&E) algorithm adding a 

coefficient related to the distance between the 

robot’s position and the optimal trajectory. The 

simulation on a mobile hexapod robot proved 

that the quality of the chosen behaviours 

outperformed the previous one by four time. 

Also, the chosen behaviour did not relied on the 

damaged leg. 

In this paper, we introduce a novel algorithm 

we call “Tree-select Trial and Error” (TTE). The 

novelty of our algorithm is in the adaptation 

phase as the robot generates new behaviours to 

compensate the effects of the damages in order 

to reach goals within its workspace after a few 

numbers of trials regardless the damage 

scenarios. Thus, learning suitable behaviours is 

an online process during which the robot 

extends its knowledge. The main contributions 

of this paper are as follows: 

● A novel adaptation to failure strategy during 

which the robot applies an online search 

within the whole behavioural space to 

compensate the damage effects. 

● Extensive simulation experiments of a planar 

manipulator with six actuators for workspace 

points considering many damage scenarios to 

achieve statistical comparison between the 

proposed TTE, IT&E and Traditional 

Bayesian Search. 

● Experimental validation on a real planar 

manipulator with six actuators to reach a 

diverse set of plan points for different 

damage scenarios. 

2. Proposed Algorithm 
The introduced algorithm (TTE) suggests 

searching within the high-dimensional 

behavioural space. However, this search is 

subjected to “Tree-select” strategy that perform 

a votes method on the actuators allowing a 

series of them to conduct a move. In addition, 

predicting new behaviours is guided through a 

strategy we call “Guided Bayesian Search” 

(GBS), that helps focusing the search, during 

each step, on the neighbourhood of the best 

solution resulted from previous steps. 

To perform the adaptation, the search tree is 

structured as the following: 

● The tree depth is equal to the number of 

actuators (𝑛). 

● The node at the 𝑖(𝑡ℎ) level describes a 

behaviour of the 𝑖(𝑡ℎ) motor. 

● Search strategy is divided into 𝑛 steps. 

● At the 𝑖(𝑡ℎ)step: a decision concerning actuators 

from  𝑖 to 𝑛 is to be made. 

The search strategy is illustrated in (Figure 1). This 

strategy helps reducing the mean number of search 

space dimensions, so that the robot does not need to 

search for a controller of length 𝑛 in every single step. 

 
Figure (1) Proposed search strategy. 

2.1 Learning the action repertoire 

Solving the equations of the inverse kinematic 

model for redundant robots is challenging in most 

cases. Circumventing this probelm was adressed by 

using MAP-Elites algorithm (Algorithm 1) that builds a 

multi-dimensional array mapping between the two 

spaces of performances and behaviours (Mouret & 

Clune, 2015).  

This process starts by searching randomly in the 

high-dimensional behavioural space and storing valid 

behaviours, then searching within the pre-stored 

behaviours to derive new ones. A behaviour is chosen 

to be stored once it meets certain criteria. 

2.2 Learning with a Gaussian Process 

A Gaussian Process is a stochastic process 

describing a collection of random variables indexed by 

time or space, such that every finite collection of those 

random variables has a multivariate normal distribution 

specified by mean m and standard deviation k 

(Rasmussen & Nickisch, 2010). 

 

 
𝑓(𝑥)~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)             (1) 

The prediction process depends on Bayes's theorem 

(Smets, 1993) which states that the posterior 

probability of a model M given evidence E is 

proportional to the likelihood of E given M multiplied 

by the prior probability of M (Brochu, et al., 2010): 

𝑃(𝐸) ∝ 𝑃(𝑀)𝑃(𝑀)           (2) 

A Gaussian Process is used to predict the best 

behaviour that can lead to every desired goal.  
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2.3 Guided Bayesian Search 

After the 𝑖(𝑡ℎ) trial, pre-tested behaviours in 

trials 1,2, … , 𝑖 − 1 are sorted to select the one 

with the best performance, let's call it 

“best_behaviour”. During the (𝑖 + 1)(𝑡ℎ)trial, 

the robot selects the most promising behaviour 

within the “angular neighbourhood” of 

“best_behaviour”. This methodology allows the 

robot to benefit most from the knowledge it 

gains through trial and error. However, this 

strategy does not restrict the search space to one 

neighbourhood since a vast transitions can  be done, 

but it requires more than a single step. The strategy 

of GBS is illustrated in (Algorithm 2).  

To make a fine comparison, GBS was tested 

on the planar manipulator as a trial and error 

algorithm. That allows illustrating the value 

added by both GBS and our proposed TTE in 

minimizing the number of trials needed by the 

robot to adapt to damage scenarios. 

2.4 Probabilistic Optimal Planning using 

tree search 

At the beginning of each episode, the 

controller vector should be chosen using a 

Gaussian Process that holds all the information 

gained from previous trials. This choice is made 

by searching within a neighbourhood of the 

previously chosen controller with the best 

performance based on the prediction of lower 

error (Euclidean distance) between the actual 

state and the goal.  

 

 
This strategy provides a remarkable 

performance where the endpoint managed to 

reach a diverse set of plan points within few 

trials exceeding the performance of previous 

algorithms with a fewer number of trials and a larger 

reachable area. The strategy of TTE is clarified in 

(Algorithm 3). 

3. Results 
3.1 Simulation results 

To highlight the performance of our proposed 

algorithm TTE, we considered the model of a planar 

manipulator with six actuators. Each of the four 

algorithms: Traditional Bayesian Search (TBS),  

Intelligent Trial and Error (IT&E), Guided Bayesian 

Search (GBS) and the novel TTE is tested to reach each 

point of the workspace for 12 different faults illustrated 

in (Figure 2). Considering these fault scenarios, Figure 

3 and Figure 4 show the number of trials needed by 

each algorithm to reach workspace points represented 

by degradation of the blue color, while the yellow color 

represents the workspace points that the robot could not 

reach. We can notice that GBS was able to produce a 

performance close to IT&E. However, TTE surpassed 

both and proved to be able to reach the largest area 

among the four algorithms within a fewer number of 

trials. To make the comparison clearer, Figure 5 and 

Figure 6 shows box-plots illustrating the number of 

trials needed by each of the four algorithms. To 

conclude, our proposed algorithm TTE did not only 

helped the robot to overcome the damages in a fewer 

trials but also enlarged the reachable workspace despite 

the damages. 

 
Figure (2) Set of faults to test algorithms. Each fault 

includes one motor stuck in 45
o
 or 90

o
 angles clockwise. 

 
Figure (3) Number of trials for the first six faults 

(from the left to the right: TTE, GBS, IT&E, TBS) 
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Figure (4) Number of trials for the second 

six faults (from the left to the right: TTE, 

GBS, IT&E, TBS) 

3.2 Experimental results 

We tested our proposed algorithm on a real 

redundant planar manipulator. The manipulator 

is composed of six links and six joints actuated 

by AX-12 servo motors (Figure 7).  

The robot is controlled directly by a PC and 

we used a camera to detect the position of its 

end-effector. TTE was implemented in Python 

language to be applied with the robot for 

different damage scenarios. Experimental 

results proved the robot's ability to overcome 

these damages and to reach the desired goals in 

its workspace in a few number of trials. Figure 8 

shows that despite the damages in the fifth and 

the sixth motors, the robot reached a desired 

goal in only five trials. 

 
Figure (5) The number of trials needed for 

each algorithms for the first six faults. 

 
Figure (6) The number of trials needed for 

each algorithms for the second six faults. 

 
Figure (7) Physical planar manipulator. 

 
Figure (8) Evaluation on a real manipulator. 

4. Conclusion 
Like any physical system, robots may face damages 

or faults. If human interference is not a valid option, 

the robot will need to overcome these damages and 

faults in order to perform its tasks. To avoid fault 

diagnosis, adaptation to failure algorithms were 

proposed to help the robot to recover through trial and 

error strategy. 

In this paper, we proposed a new adaptation to 

failure algorithm, we call “TTE” ( Tree-search Trial 

and Error), that allows a redundant manipulator to 

reach a diverse area of its workspace despite many 

failure scenarios. TTE is based on a strategy allowing 

the robot to compensate damage effects by generating 

new behaviours rather than being restricted to the 

previously learned ones. However, the robot benefits 

from its stored knowledge to select a starting point 

from which it generates new behaviours towards the 

goal. The simulation results showed that TTE 

performed better than TBS, IT&E and the proposed 

GBS as it required a lower number of trials in most 

damage scenarios. Besides, TTE enlarged the reachable 

workspace point despite the damages. TTE were also 

evaluated on a real redundant planar manipulator and 

its performance surpassed the competing algorithms. 
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